● GCC 地区的太空技术具有巨大的经济潜力,并且已经催生出一些公司和计划,有望为该地区带来数十亿美元的投资。尽管 GCC 地区积累了大量资金,但其潜力还远未发挥出来。● 太空一直是中东国家的兴趣点。据说,9 世纪在巴格达建造的天文台是世界上第一座天文台之一。然而,今天 GCC 国家才刚刚开始他们的星空之旅。虽然他们的机构相对年轻(与 NASA 和 ESA 相比),但这并不意味着这些国家缺乏进步——远非如此。海湾国家,尤其是阿拉伯联合酋长国,已经显示出惊人的增长率。● 在过去十年中,这六个国家都一直在开展与太空相关的努力。阿联酋、沙特阿拉伯、巴林和卡塔尔已经建立了自己的航天局,第一个是 2010 年成立的卡塔尔航空航天局 (QASA)。他们的太空计划主要集中在国内解决方案上,例如天气和大气成分监测。这些机构还寻求从太空任务中获取利润和科学成果。● 目前,在所有海湾合作委员会国家中,只有沙特阿拉伯、阿联酋、巴林和卡塔尔拥有自己功能齐全、运作良好的航天局。这些国家在政府举措方面最为进步,这使它们成为中东和波斯湾地区航天工业的火车头。鉴于 QASA 是所有机构中历史最悠久的机构,成立于 2010 年,我们可以有信心预测,它将立即实现与整个行业增长相称的增长,以及相对年轻的组织的潜力。
液化空气集团旗下的风险投资部门 ALIAD 首次在中国进行投资,扩大其在亚洲的影响力,同时通过对凯辉智慧能源基金的股权投资,巩固了其在能源转型中的地位。自 2013 年成立以来,ALIAD 已在全球进行了 35 多项投资,总投资额约为 1 亿欧元。ALIAD 携手道达尔碳中和风险投资公司、湖北省高科技产业投资集团有限公司、达飞集团和武汉经开产业投资基金管理有限公司,投资了凯辉智慧能源基金,这是一家致力于中国能源转型的风险投资基金,特别关注能源平台、储能、智能电网、氢能、清洁交通、可再生能源和低碳解决方案。中国正在实施环境友好型政策,旨在培育创新型企业的崛起和促进能源行业的革新,应对能源转型的全球挑战。在此背景下,凯辉智慧能源基金已发现多家正在重塑能源行业的创新公司,旨在设计高效、低碳的工业格局。该基金已对 ALLSENSE Technology 进行了首次投资,ALLSENSE Technology 是一家创新的物联网解决方案提供商,目前专注于中国火电行业的数字化和优化。这些前景广阔的技术与液化空气集团的专业知识和经验相结合,将催生出符合液化空气气候目标的创新碳中和解决方案。通过在中国的首次基金投资,ALIAD 支持液化空气在能源领域最活跃、转型最快的创新生态系统之一中的创新战略。
精确操纵和编辑人类细胞 DNA 序列的能力可以催生出强大的新型基因组药物。全球有数百万人患有遗传性疾病(Korf 等人,2019 年),其根本原因原则上可以通过治疗性 DNA 编辑剂来纠正。虽然传统的基因增强疗法可以通过提供基因的功能性副本来治疗某些常染色体隐性或单倍体不足性疾病,但基因编辑疗法可以直接纠正基因组 DNA 中的致病突变。因此,原则上,基因编辑可以治疗更广泛的遗传疾病,包括常染色体显性遗传病、因基因产物过少或过多而引起的疾病,或其他简单的基因过度表达无法最佳挽救疾病的疾病。即使对于可以通过现有基因增强或基因沉默策略解决的疾病,通过安装突变来增加或减少靶基因表达的基因编辑疗法也可以通过一次性治疗达到相同的效果,从而提供永久治愈的可能性。更广泛地说,即使没有致病突变的个体,患某些主要疾病(如冠心病)的风险也可以通过精确修改靶基因来调节,这使得基因编辑(如果被证明足够安全有效)有朝一日可能用于降低普通人群的疾病风险。治疗性基因编辑的前景促使人们做出巨大努力将基因编辑疗法引入临床。最近的进展包括开发用于哺乳动物细胞基因编辑的强大工具,包括可编程核酸酶、碱基编辑器和引发编辑器(Anzalone 等人,2020 年;Doudna,2020 年;Newby 和 Liu,2021 年)。这些基因编辑剂具有
摘要 本研究使用从 Scopus 数据库检索的数据,通过文献计量分析探索计算机科学的新兴研究领域。使用预定义查询进行系统搜索,最初得到 6,300 份文档,然后根据出版年份(2015-2025)、学科领域(计算机科学)、文档类型(期刊文章)、语言(英语)和开放存取可用性进行细化,共得到 447 篇文章。分析是使用生成的文献计量图进行的,包括术语共现和共同作者网络。结果强调了关键的新兴研究趋势,包括人工智能、机器学习、云计算、物联网 (IoT)、网络安全和量子计算方面的进步。此外,全球合作模式揭示了领先的研究贡献者和潜在的国际合作领域。这些研究结果为计算机科学研究的未来方向提供了宝贵的见解,为阿鲁沙技术学院等机构提供了战略机会,为这些进步做出贡献并从中受益。关键词:人工智能 (AI)、物联网 (IoT)、机器学习、网络安全、云计算、量子计算、新兴趋势 简介 计算机科学领域以前所未有的速度发展,成为技术创新和社会转型的基石 (Aldoseri et al., 2024; Rashid & Kausik, 2024)。作为一个充满活力的跨学科领域,它促进了人工智能、数据科学、网络安全、量子计算和人机交互等各个领域的突破性进步 (Radanliev, 2024; Taherdoost & Madanchian, 2023)。这些进步不仅彻底改变了行业,而且重塑了人们在日常生活中与技术互动的方式。然而,技术的不断变化的性质不断创造新的挑战、机遇和研究问题,从而催生出需要学术界、工业界和政策制定者关注的新兴研究领域(Dwivedi 等人,2023 年;Junaid 等人,2022 年)。
量子机器学习 (QML) 是将经典机器学习 (ML) 推广到量子领域的一种方式,近年来,这种学习方式迎来了复兴,并催生出一系列令人眼花缭乱的公式和应用(详情请参见 [1-3] 及其参考文献)。广义上讲,量子机器学习有以下分类 [4]:(i) 经典机器学习的量子加速 [5-8],(ii) 经典机器学习表征量子系统 [9-11],或 (iii) 量子设备学习量子数据(完整 QML)[12-22]。我们这里重点关注最后一类,因为在这种情况下,量子加速不仅是最有可能的,而且由于前面提到的层析成像难度呈指数级增长,因此也是最迫切需要的 [23]。人们考虑了多种用于 QML 的量子架构,从变分量子电路 [ 19 , 24 ] 到人工神经网络的量子类似物 [ 15 , 17 , 18 , 20 , 21 , 25 ]。我们认为 [ 21 ] 中引入的量子神经网络 (QNN) 架构为完整的 QML 提供了最有前途的平台。例如,此类 QNN 最近被用作量子自动编码器,以对纠缠量子态进行去噪 [ 26 ]。此外,当量子神经元足够局部且稀疏时 [ 27 ],这些 QNN 似乎提供了一种架构,可能被用来避免“荒芜高原”问题 [ 28 ]。最后,这些 QNN 被发现达到了量子学习的基本信息论极限 [ 12 , 16 , 29 – 31 ],这是由量子无免费午餐定理 [ 32 – 34 ] 规定的,这是对通用非结构化量子数据源的量子学习性能的限制。量子数据源永远不会是通用和非结构化的,因为生成它们的设备总是有结构的。事实上,因果和空间顺序体现在附近局部产生的状态之间的相关性中
经过两年的疫情,范堡罗航展重新回归,为业内人士提供了会面、做生意、交流的机会,或许最重要的是,在经历了两年前所未有的动荡之后,航展还为他们提供了激励的机会。这并不是说航空航天业已经脱离危险——目前它面临着两大劳动力挑战。第一个挑战是短期的,需要招募在疫情最严重时期裁掉的数千名员工。目前航空公司和机场的取消航班表明,将关键职能外包的“竞相压价”是愚蠢的,并将航空业推到了崩溃的边缘。当然,这并非全是他们自己造成的,在英国,政府自身的剧烈政策波动和信息传递也加剧了这种情况。随着需求回升,许多地方对新冠疫情的担忧消退,这对航空公司来说本应是一个快乐的时刻,但却迅速变成了另一个痛苦的夏天。第二个挑战更为长期,其中一些挑战(例如飞行员培训的巨大成本)早在新冠疫情之前就已存在,但疫情进一步暴露了航空业的弱点,并传递出一个信息:即使是训练有素的飞行员也难以获得工作保障。此外,过去两年,航空展的缺乏以及高校转向虚拟教育,有可能催生出“迷失的一代”年轻人,他们从未接触过飞行表演,也从未亲身体验过风洞。再加上过去两年头条新闻中关于航空旅行的恐怖报道,可能会让许多人打消从事航空业的念头。随着范堡罗航展的回归,航空业必须加倍努力,不仅要吸引那些已经离开的人,还要激励和欢迎下一代加入这个连接和塑造世界的令人惊叹的全球行业,这一点至关重要。后新冠疫情时代的航空业需要好好照照镜子,问问自己,一个社会可持续的行业是什么样子。
工作和组织性质的不断演变,在各种组织领域和职业中催生出多种前所未有的时空模式,尤其是在疫情加速数字技术的采用之后。人们越来越认为,当代某些形式的工作是一种“随时随地”发生的“短暂而不稳定的连接活动”(de Vaujany 等人,2021 年,第 688 页),而其他形式(如护理工作和建筑工作)则相反,仍然受到时间和空间的高度限制。与此同时,疫情进一步刺激了人们从事白领/专业工作的方式的变化,尤其是在组织中。这挑战了传统的以时间和空间为基础的工作理解,例如在办公室,工作量和日程安排以时钟为标志(Gregg 和 Kneese,2019 年)。相反,生产力与物理位置和规定的时间脱节,增加了“组织的地形”(Beyes 和 Holt,2020 年)。尽管我们最近目睹了工作结构、实践和关系以及工作模式和人们在工作中互动方式的深刻变化(例如,Bertolini、Fullin 和 Pacetti,2022 年;Cappelli 和 Keller,2013 年;Eurofound,2023 年),但这些转变尚未在理论和实证上得到充分探索和理解。例如,在传统的从属就业环境(例如,公共部门)中,远程工作的普及和更短的工作周的采用,以及在自由职业和按需工作中发现的其他混合形式的空间和时间管理,这些最终导致了“数字游牧主义”的概念(例如,Aroles、Granter 和 de Vaujany,2020 年)。或者,再考虑一下协作或共享工作空间的兴起和正常化(例如,Resch、Hoyer 和 Steyaert,2021 年)(包括联合办公空间、晶圆厂实验室、办公室咖啡厅,还有火车和地铁),其基础是这样的理念:组织在流动的环境中运作,处于新旧组织实践的交汇处(Schreyögg 和 Sydow,2010 年),跨越不确定的行动领域(Child 和 McGrath,2001 年),以及在瞬态关系的动态中(O'Mahony 和 Bechky,2008 年)。在这样的框架下,技术可以发挥核心作用,但甚至可以——相当矛盾的是——被视为理所当然(Sorrentino、Tirabeni 和 Toraldo,2022 年),这一考虑值得进一步思考。此外,生活与工作、生产与消费、自主工作与从属工作、有偿工作与无偿工作之间的传统界限正在变得模糊,这正在改变工作实践,重新定义工作场所互动的框架(Fineman,2012 年)。与更传统的工作方式不同,新的工作模式经常在既定的制度化就业框架之外实施(OECD,2018 年),从而导致工作多样化
博帕尔。摘要- 近年来,铝合金在活塞制造中的应用引起了广泛关注,因为它比铸铁等传统材料具有许多优势。本综述旨在全面分析铝合金在活塞制造中的应用,重点介绍其机械性能、性能和潜在挑战。铝合金活塞的主要优势在于其重量轻,有助于减少往复质量并提高发动机效率。这一特性可以提高发动机转速、降低油耗并提高车辆整体性能。此外,铝合金活塞具有出色的导热性,有助于高效散热并最大限度地降低热膨胀相关问题的风险。关键词-铝合金、活塞、强度、综述、变形、温度分布。1. 简介铝活塞重量轻,因此与铸铁活塞相比,惯性力可以降低到更大程度。在 Al-Si 活塞合金中添加超过 12% 的硅以在高温下工作,因此由于添加 Si,活塞的热强度可以提高。发动机运转时活塞顶部的温度达到约 300°C,在此温度范围内膨胀程度超过铁,因此,为了将铝活塞与铸铁气缸正确配合,活塞在室温下必须松配合。添加硅会使活塞变硬,不易磨损,因此增加了基于纤维和基质成分百分比可实现的优势。MMC 的缺点是 a) 生产系统昂贵,b) 技术仍然相对不成熟,c) 生产过程复杂(尤其是长纤维 MMC),d) 专门生产服务的经验有限,e) 在颗粒 MMC 的情况下难以实现纤维颗粒的适当扩散,f) 颗粒分布不一致,g) 长纤维充当应力集中器,h) 不均匀性质和 i) 各向异性材料。这些缺点限制了金属基复合材料在汽车应用中的使用。除了用于活塞的先进材料外,还采用一些涂层来改善活塞性能。这些涂层技术将在下一节中讨论。过去几十年的研究和创新催生出复合材料,从用于汽车车身的玻璃纤维发展到用于航空航天和其他各种应用的颗粒复合材料。有些复合材料表现出更高的耐磨性、抗氧化性和抗腐蚀性。这些设计和特性机会是传统单片(非增强)材料无法实现的。复合材料在 20 世纪 70 年代被引入工程应用时被称为“未来材料”。由两种或两种以上可明显识别的成分组成的材料在日常生活中被用作天然复合材料。天然复合材料包括木材、土壤骨料、矿物、岩石等。复合材料是最具创新性的材料,由于材料性能的增强,它取代了航空航天、汽车、结构工程等领域的传统材料。这些复合材料是通过传统的金属生产和加工现场生产的。碳化物含量高的钢或石墨以及含有金属粘合剂、碳化钨和碳化物也属于这类复合材料。2. 现有文献综述在文献综述的基础上,重点介绍了研究空白。此外,本章最后还提出了研究目标。Singh 等人 [1] 本文的目的是研究铝和镁合金活塞的应力分布和热分析。在室温下,WE43A 的强度低于 Al-7Si 活塞,但在高温下,由于 WE43A 的机械和热性能优于 Al-7Si,因此可以承受更高的效率。因此,可以得出结论,对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。可以得出这样的结论:对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。可以得出这样的结论:对于热负荷相对较高的高性能发动机,镁合金是设计活塞的理想材料,但对于峰值压力高且作用时间较长的扭矩型发动机,铝基合金是设计活塞的理想材料。Taylor 等人 [2] 强调了汽车内燃机主要摩擦部件的摩擦学设计的重要性。