ALARA 尽可能低 AR 衰减反射 CASL 轻水反应堆先进模拟联盟 CHF 临界热通量 COG CANDU 业主集团 CNL 加拿大核实验室 CNSC 加拿大核安全委员会 CRD 合作研究与开发 CS 碳钢 CT 排管 CTF COBRA-TF DAS 分布式天线系统 DCPD 直流电位降 DHC 延迟氢化物裂解 DOE 能源部 EBSD 电子背散射衍射 ECCS 应急堆芯冷却系统 EDX 能量色散 X 射线 EPR 电子顺磁共振 EPRI 电力研究院 ESC 端罩冷却 ETH 瑞士联邦理工学院 FAC 流动加速腐蚀(FAC) FEG 场发射枪 FEM 有限元模型 FHS 燃料处理系统 FIB 聚焦离子束 FM 加油机 FPGA 现场可编程门阵列 FTIR 傅里叶传输红外 HCSG 螺旋线圈蒸汽发生器HQP 高素质人才 IAEA 国际原子能机构 ICP 电感耦合等离子体
ALARA 尽可能低 AR 衰减反射 CASL 轻水反应堆先进模拟联盟 CHF 临界热通量 COG CANDU 业主集团 CNL 加拿大核实验室 CNSC 加拿大核安全委员会 CRD 合作研究与开发 CS 碳钢 CT 排管 CTF COBRA-TF DAS 分布式天线系统 DCPD 直流电位降 DHC 延迟氢化物裂解 DOE 能源部 EBSD 电子背散射衍射 ECCS 应急堆芯冷却系统 EDX 能量色散 X 射线 EPR 电子顺磁共振 EPRI 电力研究院 ESC 端罩冷却 ETH 瑞士联邦理工学院 FAC 流动加速腐蚀 (FAC) FEG 场发射枪 FEM 有限元模型 FHS 燃料处理系统 FIB 聚焦离子束 FM 加油机 FPGA 现场可编程门阵列 FTIR 傅里叶传输红外 HCSG 螺旋线圈蒸汽发生器 HQP 高素质人员 IAEA 国际原子能机构 ICP 电感耦合等离子体
摘要:本文介绍了一种使用依赖于温度和接触压力的可变摩擦系数对飞机轮胎与粗糙表面接触进行数值模拟的方法。使用滑动装置来评估摩擦系数的这种依赖性。通过热电偶测量整个轮胎横截面的温度扩散。将摩擦生热和温度扩散与数值二维和三维模拟进行了比较。可以获得足够的温度预测。在未来的模拟中,应考虑磨损,以便进行更准确的模拟,特别是在高压和滑动速度的情况下。使用依赖于温度和压力的可变摩擦系数研究了速度为 37.79 节(19.44 米/秒)并处于转弯阶段的滚动轮胎的 3D 有限元模型。数值模拟倾向于预测轮胎胎面在打滑位置滚动几秒钟后的温度,接触区的温度升高到 140 ◦ C。必须进行进一步调查才能获得实验观察到的温度变化。作者想指出,出于保密原因,某些数值数据不能透露。
定向能量沉积 (DED) 工艺的有限元模型可预测高速钢长方体样品制造过程中的热历史。模拟结果验证依赖于测量数据和预测数据之间的比较,例如基体内部的温度历史和最后一层涂层的熔池深度。这些 DED 模拟集成在优化循环中,可确定两个可变激光功率函数,它们能够产生恒定的熔池大小。这些函数有望在各层上提供均匀的微观结构。计算出的热场和由三个 AISI M4 实验产生的微观结构是相互关联的,这些实验是在恒定激光功率情况下进行的,两个优化函数位于沉积物内不同深度的三个关注点处。观察到熔体过热温度和热循环历史对微观和纳米硬度测量的影响。因此,优化的激光功率函数为样品提供了比恒定激光功率函数更均匀的微观硬度,但是,整个沉积的 M4 钢层的纳米硬度图并未完全证实微观结构的均匀性。
AOA,攻角;AVUM,姿态与游标上模块;BC,弹道系数,定义为质量/(阻力系数*参考面),kg/m 2 ;CAD,计算机辅助设计;CGG,冷气发生器;COG,重心;D&L,下降和着陆;ESA,欧洲航天局;F-TPS,柔性热防护系统;FEM,有限元模型;FS,前护盾;GNC,制导导航与控制;H2020,“地平线 2020”是实施创新联盟的金融工具,该联盟是欧洲 2020 的旗舰计划,旨在确保欧洲的全球竞争力;HIAD,高超音速充气式气动减速器;IAD,充气式气动减速器;IOD,在轨演示器;IXV,中型实验飞行器(再入演示器);MAR,空中回收;MOLA,火星轨道器激光高度计; NASA,美国国家航空航天局;SRP,超音速反向推进;SSO,太阳同步轨道;TPS,热防护系统;TRL,技术就绪水平;ULA,联合发射联盟;VEGA,欧洲先进一代火箭矢量简介
金属增材制造部件中的残余应力是一个众所周知的问题。它会导致样品在从构建板上取出时变形,并且对疲劳产生不利影响。了解打印样品中的残余应力如何受到工艺参数的影响对于制造商调整工艺参数或部件设计以限制残余应力的负面影响至关重要。在本文中,使用热机械有限元模型模拟增材制造样品中的残余应力。材料的弹塑性行为通过基于机制的材料模型来描述,该模型考虑了微观结构和松弛效应。通过将模型拟合到实验数据来校准有限元模型中的热源。将有限元模型的残余应力场与同步加速器 X 射线衍射测量获得的实验结果进行了比较。模型和测量的结果显示残余应力场具有相同的趋势。此外,结果表明,随着激光功率和扫描速度的改变,所产生的残余应力的趋势和幅度没有显著差异。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
本研究探讨了通过高功率和高速激光表面改性 (LSM) 制造 Ti6Al4V 功能梯度材料。原始样品微观结构由细长的等轴 α 相和 β 相晶界组成。对这些样品应用了九种不同的 LSM 工艺参数集。扫描电子显微镜显示,在所有情况下,激光处理样品的表面附近都有细小的针状马氏体相。观察到马氏体区下方的过渡微观结构区,其中有较大的等轴晶粒和一些马氏体 α 相生长。样品内部包含原始微观结构。发现在所有工艺参数集下进行表面改性后,表面粗糙度都会增加。进行了纳米压痕测试,以获得三相(即马氏体 α、等轴 α 和晶界 β)的硬度和模量。开发了双相晶体塑性有限元模型来研究单轴拉伸载荷下的三区功能梯度微观结构。硬化表面区域阻止了连续滑移带的扩展,而过渡区则阻止了样品外表面和内部之间过大的应力集中。
在几种温度下加工后,对基于 CdHgTe 的红外探测器的机械行为进行了评估,以确定热机械负荷对残余应力和可靠性的影响。首先,依靠 SEM、X 射线微层析成像和衍射分析,对探测器的结构进行了全面表征,以便了解所有组成层(特别是铟焊料凸块)的性质、形态和晶体取向。结果特别显示了铟凸块的意外单晶外观,具有可重复的截锥形几何形状。为了获得加工后结构在工作温度范围内(从 430 K 到 100 K)的热机械响应,随后开发了一个 3D 有限元模型。正如预期的那样,数值结果显示,从高温到低温,结构中的应力梯度发生了变化,在 100 K 时,CdHgTe 中的局部高应力约为 30 MPa,这主要是由于不同层之间的热膨胀系数不匹配。它们强调了凸块的几何形状和单晶性质以及不同材料的行为规律的重大影响。
Martina ASENBRENER KATIC*、Sanja CANDRLIC、Mile PAVLIC 摘要:“知识节点”方法是概念框架“知识节点 (NOK)”的元素之一。它能够以图形和形式化(文本)形式表示知识,并可以将自然语言句子的形式化记录存储在关系数据库中。为了能够将所有单词从自然语言句子正确转换为形式化记录,有必要设计一种语言的元模型,即分析每种特定自然语言的所有词类,并定义将自然语言句子转换为形式化记录的规则。本文分析了克罗地亚语和英语中的名词。它介绍了将名词和名词短语结构转换为形式化记录的规则,并提供了两种语言的示例。使用一小组句子(用作输入知识)和问题对系统进行了初步测试。测试结果展示并讨论。关键词:知识表示;知识节点;NOK;名词 1 引言及相关工作 知识表示的发展始于 20 世纪 70 年代的人工智能领域。它在人工智能的发展中发挥了重要作用,并且一直是人工智能最强大的领域之一 [1]。知识表示寻找对信息和知识进行形式化描述的方法,这意味着用一种具有明确语法和语义的无歧义语言或符号来表示。知识可以以不同的方式存储 [2],例如通过使用语义网络 [3]、框架 [4]、本体 [5]、模糊 Petri 网 [6]、神经网络 [7] 或其他图形方法进行知识表示 [8]。知识表示方法之一是知识节点 (NOK) [9, 10]。概念框架“知识节点 (NOK)”是一组方法、规则、相应的分析工具和自然语言句子中包含的语义表示。概念框架 NOK 包括 NOK 方法、图形表示的形式化(知识图表节点,DNOK)、以文本形式显示知识的形式化(知识形式化节点,FNOK)和以文本形式表示问题的形式化(知识形式化节点,QFNOK)[11]。初步研究 [12-14] 表明,可以使用概念框架 NOK 对自然语言中的句子进行建模。进一步的研究表明,只要规则定义明确,NOK 可适用于不同语言,而无需调整问答系统 (QA) 的算法 [15]。有必要分析自然语言的所有词类,以设计一种语言的元模型并定义将句子转换为 FNOK 记录的规则。在之前的工作中,已经在 NOK 方法中对形容词 [16] 和动词 [17] 进行了分析。本文重点关注克罗地亚语和英语中的名词。本文定义了名词转换为 FNOK 记录中的节点的规则和解决方案。规则根据名词与动词(服务于主语或宾语的名词)、谓语名词、同位语和名词格之间的关系来分析名词。此外,冠词(a、an、the)
摘要:锂离子细胞中多孔电极的微观结构强烈影响其电性化学性能。实验断层扫描技术来研究电极开发过程中的微观结构的昂贵且耗时。为了解决这个问题,提出了一种数值方法来创建数字形态以实现现实的微观结构。在这项研究中,提出了直接数学方法中的球形谐波来发展电极异质结构的虚拟3D形态。引入的方法提供了一个数值轻度的过程,可实现有效的迭代虚拟测试和优化。生成的形态模型被参数化以重现文献中观察到的NMC阴极微结构。电极模型允许评估微观结构的空间分辨几何,传输和电势特征。使用计算的特征来改善连续模型的参数化,作为最广泛使用的基于物理的模型。为此,锂箔/分离器/NMC半细胞的电化学阻抗光谱实际上是由异质和连续方法建模的。然后,就电化学阻抗光谱的动力学和传输特性而言,将修改的连续模型与异质模型作为基准进行了比较。修改的连续元模型在频率和时域都显示出改进的响应。