最小化可编程逻辑器件和专用处理器微电子器件上离散信号频率选择数字算法硬件和软件实现的硬件成本[1]。这些任务可以而且应该通过最少算术乘法运算的级联数字滤波方法和不执行算术乘法运算的多频带数字滤波(MDF)方法来解决[2],[3],[4]。最少算术乘法运算的计算级联数字滤波算法可以基于幅频特性(AFC)具有对称性的NDF、基于Walsh NDF或基于齐次和三角数字滤波器来实现[5]。没有算术乘法运算的计算MDF算法可以而且应该在低位系数的NDF基础上、在低位系数的差分数字滤波器(DDF)基础上、或在整数系数的DDF基础上实现[6],[7]。对于采样周期为 T 的 MDF 复信号 {х(nТ)},使用低通数字滤波器 (LDF) 的此类算法,仅需在 𝑛ൌ0,1,2…𝑁െ1 处添加和移位其第 n 个时间样本即可执行信号的 N 点离散傅里叶变换 (DFT) [8]。本研究的目的是比较分析离散信号的频率选择数字方法,以构建其无需算法乘法运算的算法,并确定在不执行算术乘法运算的情况下将此类方法用于离散信号的多级 DFT 的必要和充分条件 [9],[10]。该研究使用了具有最少数量的算法乘法运算的级联数字滤波算法和不执行算法乘法运算的 MDF 的计算程序 [11],[12]。此类算法的比较分析结果以及硬件和软件建模已经证明并减少了硬件
近期,基于神经网络的强化学习 (RLNN) 在许多问题上显示出了巨大的潜力,包括量子信息论中的一些问题。在这项工作中,我们将 RLNN 应用于量子假设检验,并确定区分多个量子态 { ρ j } 的最佳测量策略,同时最小化错误概率。在候选状态对应于具有许多量子比特子系统的量子系统的情况下,对整个系统实施最佳测量在实验上是不可行的。我们使用 RLNN 来寻找实验上可行的局部自适应测量策略,其中每轮只测量一个量子子系统。我们提供了数值结果,表明 RLNN 成功找到了最佳局部方法,即使对于多达 20 个子系统的候选状态也是如此。我们还证明,RLNN 策略在每次随机试验中都达到或超过了改进的局部贪婪方法的成功概率。虽然使用 RLNN 设计自适应局部测量策略非常成功,但一般来说,最佳局部自适应测量策略和最佳集体测量的成功概率之间可能存在显著差距。我们基于以前的工作,提供了一组必要和充分条件,使集体协议严格优于局部自适应协议。我们还提供了一个新的例子,据我们所知,它是最简单的已知状态集,显示出局部和集体协议之间存在显著差距。这一结果提出了关于理论上最优测量策略和实际可实施测量策略之间差距的有趣新问题。
机密信息保护受专门法案和相关法律的管制,这些法案和法律要求使用必要的物理、个人、信息和通信技术、电磁和加密安全措施。机密信息加密保护设备和工具应由指定的政府部门进行检查和评估。这些部门颁发的证书授权使用加密设备保护机密信息,但这不是充分条件。每个用于处理机密信息的 ICT 系统都需要认证。所有这些都使得达到此类信息的适当保护水平的过程变得漫长而昂贵——尤其是如果要在战场上有效地提供这种保护。对无线电通信的信息保护措施还有额外的具体要求,特别是军事通信,因为无线电传输的特点是建立和维持连接的不确定性,比特率低于电缆或光纤连接,通常没有全双工。所有这些都对加密同步的方法和加密功能的实现产生影响。经典窄带无线电通信需要一种不同的信息保护方法,时分多址模式需要一种不同的方法,宽带分组数据传输需要另一种方法。为保护无线电通信中的机密信息而设计的系统为加密算法和协议实施了适当的操作模式。来自量子计算机的最新威胁对加密保护提出了新的挑战,特别是在使用公钥加密的系统中,因为有些算法可用于攻击具有多项式复杂性的公钥方案。
摘要 新科技型企业吸引了大多数转型经济体日益增长的兴趣,因为它们被视为创造更多附加值的重要来源,同时具有较高的资本回报率。阐明新技术型企业的增长决定因素不仅有助于管理者实现组织目标,而且还有助于政策制定者制定有效的战略。许多研究人员分别研究了个人、组织以及环境因素在新技术型企业发展中的作用。这些因素的同时存在导致了不同的配置,每种配置都为企业设想了不同的增长路径。本文的目的是确定新技术型企业的成长道路。为此,我们对伊朗(作为转型经济体)发达的新技术型企业的管理人员进行了一些采访,并通过主题分析确定了支配这类企业增长模式的关键主题,同时通过定性比较分析确定了这些企业可能的增长路径。2013 年至 2015 年期间,设计好的问卷分发给了 22 家发达企业和 8 家欠发达企业,并使用 FSQCA 软件分析了获得的数据,从而制定了新技术型企业的主导增长路径。根据本文的研究结果和影响企业成长的因素,我们为新技术型企业提出了两条增长路径,其中政府发挥更大作用的路径更有可能实现。与转型经济体中的关键客户——政府官员和科技领域游说团体的沟通对企业成长至关重要,这被认为是本研究的充分条件。
摘要 凝缩蛋白是通过线性易位压缩 DNA 的分子马达。在秀丽隐杆线虫中,X 染色体含有一种参与剂量补偿 (DC) 的专门凝缩蛋白。凝缩蛋白 DC 被招募到 X 染色体 (rex) 上的少数招募元素并从中扩散,并且是拓扑关联域 (TAD) 形成所必需的。我们利用基本上没有凝缩蛋白 DC 和 TAD 的常染色体来解决 rex 位点和凝缩蛋白 DC 如何引起 TAD 的形成。当常染色体和 X 染色体物理融合时,尽管凝缩蛋白 DC 扩散到常染色体中,但不会产生 TAD。在 X 染色体上插入强 rex 都会导致 TAD 边界形成,无论序列方向如何。当相同的 rex 插入到常染色体上时,尽管有凝缩蛋白 DC 募集,但没有扩散或 TAD 特征。另一方面,当由六个 rex 位点或三个单独的 rex 位点组成的“超级 rex”插入到常染色体上时,凝缩蛋白 DC 的募集和扩散导致 TAD 的形成。因此,募集到 rex 位点并从 rex 位点扩散是重现 X 染色体上观察到的环锚定 TAD 的必要和充分条件。总之,我们的数据表明一个模型,其中 rex 位点既是凝缩蛋白 DC 的加载位点,也是双向屏障,凝缩蛋白 DC 是一种具有可移动非活性锚的单侧环挤出器。
关于算法公平的大量工作是悲剧。在确定了一套看似理想的公平标准之后,就出现了不可能的定理陈述,确定这些标准仅在完全不切实际的或琐碎的情况下是不一致或一致的(Kleinberg等人。,2017年; Pleiss等。,2017年; Chouldechova,2017年;斯图尔特和尼尔森,2020年; Beigang,2023b)。一个中心示例是由于Kleinberg和合着者的结果而导致的结果,即在某些琐碎的情况下(2017年)之外,两个称为校准和均衡的赔率不一致的约束是不一致的。一种自然反应是削弱均衡的几率。Pleiss等。表明,对于放松均衡赔率的特定方式,出现了新的可能性(2017年)。也已经研究了削弱校准的方法,但导致了更多不可能的结果(Stewart和Nielsen,2020; Stewart等人。,2024)。我们发现校准的相对优点和难以评估的均等几率。,我们认为放松每个标准以绕过不可能结果的探索是值得的。对于本研究,我们将假设均衡的赔率是算法公平的必要条件。鉴于这个假设,我们询问可以在不陷入琐碎的情况下保留哪些有趣的校准内容。我们的类型不是悲剧。我们确定了一种削弱校准的方式,该校准保留了其一些有趣的证词,但与均衡的几率一致。我们称此标准跨度。重要的是要强调,我们不是提出跨越作为算法公平的充分条件。本身就是一个薄弱的标准。在某些方面,这意味着其状态作为必要条件的情况更容易制定。与均衡的赔率相连,更强大,但可能还需要进一步的必要标准。引入
可整除码由码字权重共享大于一的共同除数的属性定义。它们用于设计通信和传感信号,本文探讨了如何使用它们来保护经逻辑门转换的量子信息。给定一个 CSS 码 C ,我们推导出横向对角物理算子 UZ 保留 C 并诱导 UL 的必要和充分条件。CSS 码 C 中的 Z 稳定器组由经典 [ n, k 1 ] 二进制码 C 1 的对偶确定,X 稳定器组由 C 1 中包含的经典 [ n, k 2 ] 二进制码 C 2 确定。对角物理算子 UZ 固定 CSS 码 C 的要求导致了对 C 2 陪集权重一致性的限制。这些约束非常适合可分码,并且代表着一个机会来利用关于具有两个或三个权重的经典代码的大量文献。我们使用由二次形式定义的一阶 Reed Muller 码的陪集构造新的 CSS 代码系列。我们提供了一种简单的替代标准方法的陪集权重分布(基于 Dickson 范式),这可能具有独立意义。最后,我们开发了一种绕过 Eastin-Knill 定理的方法,该定理指出,没有 QECC 可以仅通过横向门来实现一组通用逻辑门。基本思想是分层设计稳定器代码,具有 N 1 个内部量子比特和 N 2 个外部量子比特,并在内部量子比特上组装一组通用容错门。
独联体成员国与世界上大多数国家一样,提出了不断实现能源来源多样化的任务,以加强能源和环境安全,并履行《巴黎协定》规定的义务。 2022-2023 年碳氢化合物价格上涨为降低经济能源强度提供了额外动力,并使可再生能源技术更具竞争力。这些因素导致全球对可再生能源(RES)和绿色氢的需求加速增长。所有独联体成员国都面临着气候变化的负面影响,都是《巴黎协定》的缔约方,并正在实施气候政策措施。但其实施面临的一个重大障碍是能源资源使用产生的二氧化碳排放与经济增长之间的关系。这种依赖性是大多数发展中和快速增长经济体的特征,很难打破。增加可再生能源在能源平衡中的份额是必要但非充分条件。需要开发一种新的增长模式——向基于低碳能源系统的“绿色”经济、“生物经济”和“循环经济”转型。一个重要的工具是开发自然和气候项目中的碳单位市场,以减少产品(特别是碳密集型产品)的碳足迹。 2022–2023 年。独联体成员国在可再生资源利用、气候变化等领域合作显著加强。与此同时,尽管机制化机制和个别低碳能源项目已经运转,但该领域合作尚未得到充分发展。建立涵盖技术创造整个过程的合作极其重要,从科学研发阶段开始直至实施和转让。独联体成员国存在发电能力过剩,因此可以考虑生产低碳“橙色”氢气的可能性。将这一能源融入独联体经济,
因式分解、搜索和模拟等任务的量子算法依赖于控制流,例如分支和迭代,这些控制流取决于叠加数据的值。控制流的高级编程抽象,例如开关、循环、高阶函数和延续,在经典语言中无处不在。相比之下,许多量子语言不提供叠加控制流的高级抽象,而是需要使用硬件级逻辑门来实现这种控制流。造成这种差距的原因是,虽然经典计算机使用可以依赖于数据的程序计数器来支持控制流抽象,但量子计算机的典型架构并不类似地提供可以依赖于叠加数据的程序计数器。因此,可以在量子计算机上正确实现的完整控制流抽象集尚未建立。在这项工作中,我们对可以在量子计算机上正确实现的控制流抽象的属性进行了完整的描述。首先,我们证明,即使在程序计数器处于叠加态的量子计算机上,也无法通过将经典条件跳转指令提升到叠加态来正确实现量子算法中的控制流。该定理否定了将控制流的一般抽象(例如 𝜆 演算)直接从经典编程提升到量子编程的能力。作为回应,我们提出了在量子计算机上正确实现控制流的必要和充分条件。我们引入了量子控制机,这是一种指令集架构,其条件跳转被限制为满足这些条件。我们展示了这种设计如何使开发人员能够使用程序计数器代替逻辑门来正确表达量子算法中的控制流。
在脊椎动物的中枢神经系统 (CNS) 中,神经胶质细胞源自神经干细胞(也称为放射状神经胶质细胞),其在早期胚胎阶段从神经上皮分化而来 [4]。放射状神经胶质细胞首先产生神经元,然后转换到胶质生成阶段,产生少突胶质细胞和星形胶质细胞 [4]。细胞命运决定由几种分泌信号(例如,音猬因子 (Shh)、成纤维细胞生长因子 (FGF)、Wnt、Notch/Delta、骨形态发生蛋白 (BMP) 和细胞因子)精细调控。关键转录因子,包括 Sox9、核因子 I、血清反应因子和 Olig1/Olig2 共同作用以促进神经胶质细胞分化 [5],[6],[7],[8],[9],[4]。几种神经元发育途径在进化上是保守的 [10],[11]。相反,神经胶质细胞的发育在整个进化过程中表现出显著差异。例如,在无脊椎动物模型果蝇中,神经胶质细胞的产生与神经元的产生同时发生,这两种神经类型同时由称为神经母细胞的神经干细胞产生,而在高等生物中,神经胶质细胞的产生晚于神经元的产生 [12],[4]。此外,一种名为 Glial Cell Missing/GLIal Cell DEficient(全文为 Gcm/Glide 或 Gcm)的转录因子是神经胶质细胞特化的必要和充分条件 [13],[14],[15],[16]。Gcm 直系同源物已在原口动物和后口动物中被鉴定 [17],但它们在脊椎动物神经胶质细胞的分化中既不表达也不需要,因此在进化过程中 Gcm 级联的功能保守性方面产生了一个长期存在的难题。除淡水龙虾 [18] 外,Gcm 靶基因 Repo(反向极性)在苍蝇以外的动物中没有神经胶质生成作用,repo 基因甚至不存在于脊椎动物基因组中。总之,这些发现表明神经胶质发育程序在进化过程中多次出现。