Loading...
机构名称:
¥ 1.0

可整除码由码字权重共享大于一的共同除数的属性定义。它们用于设计通信和传感信号,本文探讨了如何使用它们来保护经逻辑门转换的量子信息。给定一个 CSS 码 C ,我们推导出横向对角物理算子 UZ 保留 C 并诱导 UL 的必要和充分条件。CSS 码 C 中的 Z 稳定器组由经典 [ n, k 1 ] 二进制码 C 1 的对偶确定,X 稳定器组由 C 1 中包含的经典 [ n, k 2 ] 二进制码 C 2 确定。对角物理算子 UZ 固定 CSS 码 C 的要求导致了对 C 2 陪集权重一致性的限制。这些约束非常适合可分码,并且代表着一个机会来利用关于具有两个或三个权重的经典代码的大量文献。我们使用由二次形式定义的一阶 Reed Muller 码的陪集构造新的 CSS 代码系列。我们提供了一种简单的替代标准方法的陪集权重分布(基于 Dickson 范式),这可能具有独立意义。最后,我们开发了一种绕过 Eastin-Knill 定理的方法,该定理指出,没有 QECC 可以仅通过横向门来实现一组通用逻辑门。基本思想是分层设计稳定器代码,具有 N 1 个内部量子比特和 N 2 个外部量子比特,并在内部量子比特上组装一组通用容错门。

用于量子计算的可除代码

用于量子计算的可除代码PDF文件第1页

用于量子计算的可除代码PDF文件第2页

用于量子计算的可除代码PDF文件第3页

用于量子计算的可除代码PDF文件第4页

用于量子计算的可除代码PDF文件第5页

相关文件推荐

2022 年
¥13.0
2021 年
¥1.0