Loading...
机构名称:
¥ 1.0

1. 简介 量子计算是一种利用量子现象进行计算的新范式。目前,有噪声中型量子 (NISQ) 计算机 [1] 已经面世,再加上量子计算霸权方面的最新进展 [2, 3],人们对这些设备的兴趣日益浓厚,因为它们可以比传统机器更快地执行计算任务。在许多近期应用 [4, 5] 中,量子机器学习 (QML) [6, 7] 领域被认为是利用 NISQ 计算机的一种有前途的方法,包括应用于高能物理 [8, 9] 等不断发展的研究领域。如今,量子处理单元 (QPU) 基于两种主要方法。第一种方法基于量子电路和基于量子逻辑门的模型处理器,最流行的实现者是 Google [10]、IBM [11]、Rigetti [12] 或英特尔 [13]。第二种方法采用退火量子处理器,例如 D-Wave [14, 15] 等。这些设备的开发和量子优势的实现 [16] 表明,未来几年将发生计算技术革命。然而,在 QPU 技术发展的同时,我们仍然必须对量子计算进行经典模拟,这一直是量子研究的基石,以阐述新的算法和应用。从理论角度来看,它是测试和开发量子算法的基本工具,而从实验角度来看,它为基准和错误模拟提供了平台。基于电路的量子计算机可以使用薛定谔或费曼方法进行经典模拟 [17, 18]。前者基于跟踪完整量子态并通过专门的矩阵乘法程序应用门。后者受到费曼路径积分的启发,可用于通过对不同历史(路径)求和来计算最终状态的振幅。薛定谔的方法是内存密集型的,因为它需要存储完整的

用于量子计算的开源模块化框架

用于量子计算的开源模块化框架PDF文件第1页

用于量子计算的开源模块化框架PDF文件第2页

用于量子计算的开源模块化框架PDF文件第3页

用于量子计算的开源模块化框架PDF文件第4页

用于量子计算的开源模块化框架PDF文件第5页

相关文件推荐

2022 年
¥13.0
2021 年
¥1.0