微藻对生物燃料和生物产生产生的强大潜力;但是,有效的收获方法仍然是增强微藻产品的经济竞争力的关键挑战。这项研究引入了一种简单的方法,用于制造适合场景的自我清洁微滤膜。微藻溶液通过用ZnO涂层氧化铝底物。使用反应性磁控溅射沉积ZnO层,并通过受控涂层厚度调整膜的功能性能。表面表征证实了均匀的晶体ZnO层的形成。发现Zno涂层膜的太阳光吸收随涂层厚度而变化。膜的水接触角从ZnO涂层后的80°降低至42°,表明亲水性大幅增加。最初均未涂层和ZnO涂层的氧化铝膜显示出约55 l m⁻2H⁻1(LMH)的渗透通量,但ZnO涂层的膜表现出优质的结变耐药性,与32%滤过32%的embrane incembrane incebrans相比,在32%的滤膜后仅5%通量下降。 在最佳条件下,ZnO涂层的膜在太阳能模拟器暴露的30分钟内实现了完全的通量恢复,突出了它们出色的光催化自我清洁能力。 在三个重复的过滤周期和膜恢复的情况下,Zno涂层的MEM麸皮的性能保持稳定,标准DEVI <5%,证实了Zno涂层的耐用性。最初均未涂层和ZnO涂层的氧化铝膜显示出约55 l m⁻2H⁻1(LMH)的渗透通量,但ZnO涂层的膜表现出优质的结变耐药性,与32%滤过32%的embrane incembrane incebrans相比,在32%的滤膜后仅5%通量下降。在最佳条件下,ZnO涂层的膜在太阳能模拟器暴露的30分钟内实现了完全的通量恢复,突出了它们出色的光催化自我清洁能力。在三个重复的过滤周期和膜恢复的情况下,Zno涂层的MEM麸皮的性能保持稳定,标准DEVI <5%,证实了Zno涂层的耐用性。这些发现突出了Zno涂层的陶瓷膜的潜力,作为可持续微藻收集的具有成本效益的解决方案。
H 2-进化动力学在管理光催化氢进化过程中起关键作用。然而,实现对H吸附和H-吸附平衡(H ADS /H DES)的精确调节仍然是一个巨大的挑战。在此,我们提出了一种调整D-P杂交策略,以精确优化Ni-B X修饰CDS Photocatalyst(Ni-B X /CDS)中的H ADS /H des Kinetics。X射线吸收细胞结构光谱和理论计算表明,Ni-B X cocatalyst的B原子量增加逐渐增强Ni 3 D和B 2 P之间的D-P轨道相互作用,从而导致连续的D-band宽带扩展和可控制的D-band d-band d-band d-band在Ni Active位点上中心。上述连续的D频带优化允许对Ni -B X /CD中的H ADS /H DES动力学进行精确调制,最终证明了13.4 mmol G -1 H -1 H -1 H -1(AQE = 56.1%)的显着H 2-散发活性。飞秒瞬态吸收光谱进一步确认了Ni-B X /CDSPSD催化剂中快速的电子转移动力学。这项工作为预期H 2-进化催化剂的最佳设计提供了见解。
出色的光吸收特性,中等带结构和良好的光电化学特性。然而,传统的Znco₂O₄在光催化co₂还原中的性能受到诸如低光催化活性和选择性不佳的因素的限制。因此,修改Znco₂o₄以增强其光催化性能已成为当前研究的重点。双金属氧化物材料通过结构合适的界面来扩大光催化剂的分离和运输,可广泛用于改善光催化剂的性能。通过探索Znco₂o₄的接口构建,可以优化其光吸收性能,从而改善Znco₂o₄的可见光利用;可以提高光生电子孔对的分离效率,从而降低电子孔重组。并且可以改善CO₂的吸附和激活。
Oussama Baaloudj、Nhu-Nang Vu、Aymen Amine Assadi、Le van Quyet、Phuong Nguyen-Tri。设计和开发用于光催化应用的高效硅铅矿基材料的最新进展。胶体和界面科学进展,2024 年,第 327 页,第 103136 页。�10.1016/j.cis.2024.103136�。�hal- 04529271�
光催化水分裂已成为氢生产的可持续途径,利用阳光来驱动化学反应。本综述探讨了DENSITY功能理论(DFT)与机器学习(ML)的整合,以加速光催化剂的发现,优化和设计。DFT提供了对电子结构和反应机制的量子力学见解,而ML算法可以对材料特性,催化性能的预测和逆设计进行高通量分析。本文大约在二元光催化系统中取得进步,突出了Tio 2,Bivo 4和G-C 3 N 4等材料,以及新型的异质关节和共同催化剂,以改善光吸收和电荷分离E FFI的效率。关键突破包括在实验和计算数据集中训练的ML架构,例如随机森林,支持矢量回归和神经网络,以优化带隙,表面反应和氢的演化速率。诸如量子机学习(QML)和生成模型(GAN,VAE)等新兴技术展示了探索假设材料并提高计算效率的潜力。该评论还突出了高级光源,例如可调LED和太阳模拟器,以实验光催化系统的实验验证。挑战与数据标准化,可伸缩性和可解释性有关,提出了协作框架工作和开放访问存储库,以使DFT-AI工具民主化。通过桥接实验和计算方法,这种协同方法的变化潜力可实现可扩展的,成本的氢生产,为可持续能源解决方案铺平了道路。
氮化碳(CN)基于二氧化碳二氧化碳(CO 2)还原有望。但是,CO 2转换中的次优产生产量和有限的选择性构成了实现有效的CO 2转换的显着障碍。在这里,我们使用一种新型的串联热钙化合成策略介绍了超质TE NP和CN纳米片之间P-N异孔的构建。通过氨辅助钙化,在CN纳米片的表面上生长了超质Te NP,从而产生了强大的P-N异质结。合成的异质结表现出增加的特定表面积,增强的可见光吸收,密集的CO 2吸附能力和有效的电荷转移。最佳TE/CN-NH 3显示出优质的光催化CO 2降低活性和耐用性,CO的选择性接近100%,产率高达92.0μmolG 1 H 1,与纯CN相比增加了四倍。实验和理论计算揭示了TE/CN-NH 3 P-N异质结的强内置电场加速了在CN纳米片上从TE NPS到N个位点的光生电子的迁移,从而促进CO 2减少。这项研究为建造高性能P-N异质结光催化剂提供了一种有希望的材料设计方法。
今天的摘要文章信息,通过有效利用自然资源,可以使用景观中的节能解决方案。但是,我们可以通过自然消耗自然资源而自我更新的能源来满足我们的能源需求。本研究旨在揭示如何在节能解决方案框架内解决景观计划和设计过程中涉及的所有活动。该研究的材料包括可再生能源和节能解决方案中使用的其他自然资源,以及能够可持续使用及其产生的作品的资源价值。该研究的方法介绍了传统的景观设计过程和节能景观设计过程,并确定了定义节能景观设计方法的参数。在城市或农村地区的节能景观设计,或各种尺寸的开放绿色空间,将通过使用植物材料潜力和地理数据来确保能源有效地利用能源,以进行气候控制,阴影和凉爽的区域,设置良好的结构,适当的材料选择,有效的土地利用,良好的土地使用,有效的花园以及有效的农业生产。为开发一种用于节能景观设计的模型,已经确定了在景观设计中使用太阳能,风能,地热和生物质能量的标准。此外,还考虑了能源在生存和非生存材料,绿色屋顶,绿色墙壁,爱好花园,永续农业花园,雨水花园和Xeriscape地区的实用和经济使用。在这种情况下,目的是通过这些标准为景观设计过程创建指南。
摘要:如今,由于其高稳定性和诱变性,芳香物质受到的环境污染已成为一个关注点。在这方面,研究人员将注意力集中在11的光催化过程的发展上,以将硝化化合物转化为苯胺。在这项工作中,研究了硝基苯(NB)到苯胺(AN)的光催化转化。使用商业TIO 2(P25)和基于嵌入在syndiotictic Polystyrene(SPS)气凝胶(SPS/P25气凝胶)的P25的光催化气凝胶14的光催化气凝胶14作为光催化反应进行。在光催化实验期间,将不同的酒精用作氢源。在16时,优化的工作条件(光催化剂剂量:0.5 mg/l和50%(v/v)eTOH%),达到了17个收益率高99%。根据结果,这项工作开辟了一种有效的方法18,使用与SPS/P25气凝胶的轻度反应条件一起生产NB,鉴于可能对光催化过程的扩展为19。20
(2024年9月11日收到; 2024年11月20日修订; 2024年11月20日接受)摘要。氧化锌纳米颗粒(ZnO-NP)是一种可生物降解且与生物系统具有低毒性和高兼容性的纳米材料。它们似乎具有生物医学和光催化应用的巨大潜力,尤其是与其他金属氧化物纳米材料相比。此外,ZnO-NP具有强大的紫外线(UV)吸收特性,具有成本效益,并且易于合成。但是,纯ZnO-NP具有多个局限性,包括宽的能量带隙,高激发结合能,可见范围内的光催化活性差以及限制其应用的显着电子孔重组。为了解决这些局限性,本研究成功地将氧化石墨烯(GO)纳入ZnO-NP。增加4%的速度将能源差距从2.87 eV减少到2.20 eV,从而大大增强了其活动。由于整合,它们的光催化活性增强了,在80分钟可见光暴露后,降解了98%的亚甲基蓝色染料。此外,GO融合增加了其抗氧化活性,将其半最大抑制浓度(IC 50)从38.38%增加到51.60%。与纯ZnO-NP相比,纳米复合材料表现出优异的抗菌活性,并表明通过GO整合增强了抗菌作用。这些增强归因于改善的带隙,稳定性,表面功能和纳米复合形态,如各种表征方法所证实。关键词:抗菌,抗氧化剂,染料降解,GO/ZnO纳米复合材料,反应性氧
光力学晶体腔(OMCC)是广泛现象和应用的基本纳米结构。通常,此类OMCC中的光力相互作用仅限于单个光学模式和独特的机械模式。从这个意义上讲,消除单个模式约束(例如,通过添加更多的机械模式)应启用更复杂的物理现象,从而产生多模光学相互作用的背景。然而,仍然缺少一种以控制方式以多种机械模式产生多种机械模式的一般方法。在这项工作中,我们提出了一条途径,将多种GHz机械模式限制在与OMCC工程相似的光学耦合率(最高600 kHz)的相同光场的途径。本质上,我们在腔中心和镜像区域之间的绝热过渡中增加了单位细胞的数量(由圆形孔在其两侧的圆形孔中穿孔)。值得注意的是,我们的空腔中的机械模式位于完整的语音带隙内,这是在低温温度下实现超高机械Q因子的关键要求。使用标准的硅纳米技术在完整的语音带隙中的多模bevavior和实现的简单性使我们的OMCC对在经典和量子领域中的应用高度吸引人。
