,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国,韦芬大学,韦芬,261061,公关B国家主要环境模拟和污染控制,生态环境科学研究中心,中国科学院,北京学院,北京,100085,100085中国北京有机太阳能电池和光化学转化的主要实验室,天津技术大学,天津大学,天津大学,300384,PR中国环境工程与科学计划,化学与环境工程系,辛辛那提大学,辛辛那提大学,辛辛那提大学,辛辛那提大学,林区,林区,林区,林区,林业农业大学,泰安,271018,公关中国
摘要:废水中的新兴污染物对人类健康和野生动植物构成了重大风险,尤其是由于它们在WWTPS的经过处理的废水中的持续存在。最新的研究集中在使用无机和有机光催化剂基于高级氧化过程开发新技术,以在可见光下处理污染的废水。这项研究研究了使用异质光活性聚合物材料P2,P3和P4的农药驱动系统。这些材料以亲水性聚合物微粒的形式设计,并用玫瑰孟加拉官能化,在AHMPD降解(一种杀虫剂杀虫剂)中,已表现出有效的单线产生和一阶动力学。鉴于文献中的大多数研究都集中在城市WWTP上,而对工业废水处理的重视程度较低,因此该研究集中在农业食品领域的工业WWTP的废水中,该研究的过程是柑橘大量的柑橘和AHMPD高浓度和其他PESTERIDES的浓度。评估光活性材料P3和P4的降解潜力,在pH = 11的条件下,AHMPD的去除率高达85%,暴露于可见光的48小时后。
Rajeev Ahuja 是瑞典乌普萨拉大学的计算材料科学教授。目前,他是印度理工学院 (IIT) 罗帕尔分校的校长。他是瑞典和印度被引用次数最多的研究人员之一。1992 年,他在印度 IIT Roorkee 获得博士学位。同年,他加入瑞典乌普萨拉大学担任博士后研究员。1996 年,他成为瑞典乌普萨拉大学的助理教授,2002 年成为副教授,2007 年成为教授。他的主要兴趣领域是计算材料科学,专注于能源应用,例如电池、氢气存储和生产、传感器和高压物理。他在同行评审期刊上发表了 1150 篇科学论文,H 指数为 103,i-10 指数为 795,引用次数超过 48,000 次。Ahuja 指导了 30 名博士生和 35 多名博士后。他被美国物理学会 (APS) 选为 FRSC(英国伦敦皇家化学学会院士)和 APS 院士,并被任命为英国皇家化学学会《材料化学 A》和《材料进展》杂志的顾问委员会成员。他是《纳米能源》的副主编。他还被授予 2017 年 APS 三月会议的 Beller 讲座教授职位。他曾获得瑞典皇家科学院 (KVA) 颁发的 2011 年 Wallmark 奖,此前还获得过 Eder Lilly & Sven Thureus 奖和 KVS 颁发的 Benzelius 奖。Ahuja 是瑞典皇家科学院 (KVS) 的当选成员。他因在 2021 年研究方面的卓越表现,被印度 IIT Roorkee 授予最佳校友奖。
摘要:将CO 2减少到燃料和平台化学物质中是实现循环经济的一种有前途的方法。但是,既定的优化方法都不适合多变量的多次光催化系统,因为它们旨在优化一个性能指标,同时牺牲其他标准,从而限制整体系统性能。在此,我们通过定义一个考虑多个功绩数字的整体系统性能的指标来解决这一多项挑战,并采用机器学习算法来通过大型参数矩阵有效地指导我们的实验,以使整体优化可用于人类实验主义者。作为一个测试平台,我们采用了一个五组分系统,该系统将自组装到光催化胶束中,以减少CO 2-CO,我们对其进行了优化,以同时提高产量,量子收益率,周转数和频率,同时保持高选择性。使用机器学习算法利用数据集可以量化每个参数对整体系统性能的影响。出乎意料地揭示了缓冲液浓度是最佳光催化活性的主导参数,并且是催化剂浓度的四倍。通过提供对绩效瓶颈的前所未有的见解,增强可比性的前所未有的见解,扩大了这种方法来定义和优化整体绩效的使用和标准化将加速催化的进展,并取得了比较的比较。■简介
光催化混凝土技术在可持续建筑和基础设施中引起了人们的关注,因为其在催化有害空气污染物的分解和改善空气质量方面的关键作用。它结合了拟催化剂,例如二氧化钛(TIO 2)和氧化锌(ZnO),以净化空气并提供自我清洁的限制。本综述研究了光催化混凝土的污染物去除能力,分析了影响其功效的因素,探索了不同的制备方法和机械性能,并包括生命周期评估(LCA)以评估其环境影响。基于水的材料,作为光催化剂的载体,基于光催化剂的类型,尤其是不同类型的TIO 2和ZnO晶体,表现出不同的作用。对制备方法的分析,包括混合,喷涂和浸渍,强调了旨在提高涂层的活性寿命和粘结强度与混凝土底物的粘合强度的必要性。讨论涵盖了通过表面修饰增强光催化剂性能的策略,以应对相关的技术和未来挑战。创新方法,例如使用再生玻璃来增加氮氧化物去除率,并纳入了多孔材料(例如沸石)来提高二氧化硫(SO 2)和二氧化碳(CO 2)的光催化效率。TIO 2纳米颗粒的馏分显着影响水泥基材料的水合和整体性能,最佳范围为4-10 wt%的水泥质量。LCA分析表明,有必要探索更环保的设计选项,以增强光催化技术在混凝土基础设施中的应用,例如建筑外墙,道路,隧道和其他基础设施。
用硅烷剂修饰生物合成的TiO 2纳米颗粒的表面,以产生与TiO 2 /β -Cyclodextrin和TiO 2 / ag / ag /β-环糊精纳米复合物的制备的化学联系。使用不同技术,包括FTIR,DRS,XRD,ICP,TGA,FESEM和EDX映射,鉴定了合成的纳米复合材料的结构。在阳光照射下(400-700 nm)下,在水溶液中甲基蓝染料的甲基蓝染料降解中研究了纳米复合材料的光催化活性。研究了研究甲基蓝染料降解的有效因素,包括纳米复合剂量,初始亚甲基蓝浓度和辐射时间。结果表明,在最佳降解条件下(0.01 g纳米复合材料,初始亚甲基蓝浓度为10 ppm和120分钟的阳光暴露时间),TIO 2 / ag /β-环糊精 - 环糊精在测试的纳米复合材料中表现出最高的光催化活性。纳米复合材料的光催化效率显示出:TIO 2 / AG /β-环聚糖素(99.38%)> TIO 2 /β-环糊精(84.1%)> TIO 2纳米颗粒(63.76%)。合成的纳米复合材料的光催化活性表明,这些材料可能是各种污染物降解的有希望的候选者。
由于环境中抗生素残留物的激增,二次污染正在加剧。这种现象可能引发多种意想不到的后果,导致形成持久的副产物,即使使用现代废水处理方法,这些副产物也难以分解。4 抗生素耐药性 (AMR) 对生物生态系统造成的广泛毒性和威胁使得其在水系统中的检测、消除和降解成为全球迫切关注的问题。随着全球人口的不断增长,有害污染物排放到水生环境和陆地生态系统中的数量也相应增加。为了应对这一挑战,必须使用能够有效消除水源中微量污染物的新型可持续技术。在水处理领域,长期以来一直依赖传统方法来解决微量污染物的问题。5 通过凝结、沉淀和活性炭吸附等各种处理方法,可以迅速消除水源中的这些污染物。 6 微污染物包括多种物质,如药品、个人护理产品和农药,对水处理设施构成重大挑战。这些化合物通常浓度较低,因此很难去除。凝结是一种常用的工艺,涉及向水中添加化学物质以促进颗粒和污染物的聚集。 7 虽然凝结可以有效去除较大的
1控制论,纳米技术和数据处理部,自动控制学院,电子和计算机科学,西里西亚技术大学,阿卡迪米卡16,44-100,波兰2。波兰科学院物理学院研究中心马格托普,阿勒贾·洛特尼科夫32/46,02-668波兰华沙4 4 4 4 4 4 4材料科学研究所,麦克斯·伯格曼生物材料中心和德雷斯登纳米分析中心,纳米分析中心威尼斯福斯卡里大学,通过Torino 155,I-30172委内兹Mestre,意大利MONIKA.KWOKA@POLSL.pl,Massimo.sgarzi@unive.it.it和Gianaurio。cuniberti@tu-dresden.de
近一个世纪以来出现了大量关于烯烃Z/E异构化的报道,但其中绝大多数仍然局限于二、三取代烯烃的异构化,四取代烯烃的立体特定Z/E异构化仍是一个尚未开发的领域,因此缺乏轴手性烯烃的立体发散合成。本文我们报道了通过不对称烯丙基取代异构化对四取代烯烃类似物进行对映选择性合成,然后通过三重态能量转移光催化对其进行Z/E异构化。在这方面,可以有效实现轴手性N-乙烯基喹啉酮的立体发散合成。机理研究表明,苄基自由基的生成和分布是保持轴手性化合物对映选择性的两个关键因素。
化学浴沉积(CBD)用于在玻璃基板上生长ZnO纳米棒。种植的Zno纳米棒被浸入含铜三水合物中[Cu(no 3)2 .3 H 2 O]在90℃的溶液30分钟,然后在400°C下在400℃退火1 h,以将Cu 2 +离子转换为CU 2 +离子以Cuo Nanoparticles转换为Zno/coopompompompompots,并形成Zno/Cuopompomps shiocompompssip。从田间发射扫描电子显微镜(FESEM)获得的图像表明,ZnO结构由Cuo纳米颗粒中涂层的纳米棒组成。ZnO NRS和ZnO/CuO纳米复合材料的光吸收均被强烈边缘,能量间隙分别为3.26和3.21 eV。在不同的pH条件下,在室温下研究了制成的ZnO NRS和ZnO/CuO纳米复合材料薄膜针对尖脂素染料的光降解速率。通过增加暴露于溶液的光和/或pH的时间来增加染料的光降解速率。随着pH值从4增加到4,在330分钟后,pH值从4增加到12,在可见光照射下的光降解速率范围从36%到100%,pH值从4增加到4,pH值为12,pH值为12,pH值为12,pH值减少到78%。此外,还进行了ZnO/CuO纳米复合材料的acriflavin Degra dation的反应性物种的捕获实验
