背景和目的:为提高光催化降解性能,优选使用具有较大表面积的光催化剂颗粒。二氧化钛作为光催化剂的有效性取决于所用的合成方法。该方法影响所生产的催化剂的粒度、结晶度和相组成。本研究旨在开发一种用于棕榈油厂废水深度处理的纳米二氧化钛光催化剂的绿色合成工艺。方法:二氧化钛纳米粒子的绿色合成使用含有保加利亚乳杆菌培养物和钛氧氢氧化物金属氧化物的德曼-罗戈萨-夏普肉汤培养基。研究的因素是钛氧氢氧化物的摩尔浓度(0.025 摩尔;0.035 摩尔和 0.045 摩尔)和温度(40;50 和 60 摄氏度)。使用粒度分析仪对合成的光催化剂进行表征以确定粒度。所生产的纳米粒子尺寸范围为 1-100 纳米的光催化剂进一步采用扫描电子显微镜-能量色散 X 射线和 X 射线衍射进行表征。对光催化剂进行了棕榈油厂二级废水深度处理测试。本次测试研究的因素包括辐射时间和二氧化钛光催化剂剂量。处理性能从废水质量和污染物去除效率两个方面进行评估。结果:利用保加利亚乳杆菌通过钛氧氢氧化金属氧化物生物合成了纳米二氧化钛光催化剂。在 60 摄氏度的温度下和 0.025 摩尔金属氧化物溶液中进行的合成过程产生了尺寸为 33.28 纳米的二氧化钛光催化剂。经测定,光催化剂中钛和氧组分的含量分别为39.06%和47.95%,二氧化钛结晶度为67.6%,θ度为25.4。这表明绿色合成制备了锐钛矿衍射纳米二氧化钛光催化剂。用该二氧化钛光催化剂处理棕榈油厂二级废水,化学需氧量去除率为16.16-27.27%,生物需氧量去除率为11.05-21.95%。苯酚具有毒性并且难以生物降解,在使用1克/升光催化剂剂量,照射2.5小时的情况下,可以显著去除苯酚(高达81.12%)。结论:纳米二氧化钛光催化剂的生物合成受温度和金属氧化物浓度的影响。棕榈油厂二级废水光催化深度处理工艺表明,该合成工艺可有效去除酚类物质。木质素、氨基酸和果胶等化合物在该工艺中矿化不明显。
摘要:二氧化钛(TIO 2)是由于其物理和化学性质,是最广泛使用的光催化剂之一。在这项研究中,与利弊一起讨论了使用TIO 2-和基于钛酸盐的光催化剂的氢能产生。已经详细阐述了光催化的机制,以查明光催化剂以提高性能。已经评估了TIO 2光催化剂的主要特征和局限性。此外,用过渡金属,过渡金属氧化物,高贵金属,氮化碳,石墨烯等修饰的基于TIO 2的光催化剂。已进行了审查。这项研究将为初学者提供基本的理解,并向该领域的专家提供详细的知识,以优化基于TIO 2的基于TIO 2的光催化剂以用于氢生产。
• 研究表明,很少有超薄涂层采用受控沉积方案,可选择性地产生所需的 H 2 和 O 2 反应,而不是光催化剂颗粒上不需要的氧化还原梭反向反应。通过开发用于平面电极和光催化剂颗粒 (AG) 上超薄氧化物涂层 (AI) 的控制合成、沉积和表征的通用方案,我们将更好地了解如何可控地设计界面以实现选择性所需反应,例如,HER 和氧化还原梭氧化,而不是 HOR 和氧化还原梭还原的相反不需要的反应。我们的协议开发与稳定性 (PEC、STCH) 和催化剂放置控制 (LTE、燃料电池) 的研究相协同,我们利用 EMN HydroGEN 联盟在 ALD (NREL)、理论 (LLNL) 和单粒子测量 (SNL) 方面的专业知识。
化学通常研究物质的组成和性质,以及物质在不影响其组成元素的情况下能够经历的转变。几个世纪以来,这项研究仅集中于单个分子,在某种程度上还集中于简单的线性聚合物(一维)。然而,最近主要利用了通过网状化学在更高阶维度(二维和三维)中获得控制的能力。[1] 从这个意义上讲,多孔材料在分离、能量转换、存储、光电子和催化等各种过程中变得极为重要。[2–8] 其中,沸石被认为是社会发展的主要贡献者,因为它们易于获得、价格低廉、通过模板效应易于进行结构设计,并且在材料和材料领域应用广泛。
乙酸和酮衍生物。[1] 这些化学品作为制造香水、染料和药物的重要分子构件和中间体具有广泛的应用。由于 C C 键能相对较高(90 kcal mol - 1 ),C C 键断裂在热力学上不利,传统的 C C 键断裂过程大多是由能量和成本密集型系统驱动的热催化反应,严重依赖有毒/昂贵的氧化剂、贵金属催化剂,并且通常需要恶劣的条件。[2] 因此,在温和条件下进行选择性 C C 键断裂作为升级生物质衍生多元醇的有效工具而备受追捧。甘油是一种用途广泛的多元醇,也是生物柴油生产中的重要副产品,生物柴油产量巨大,导致大量过剩产品以极低的价格(0.11 美元/公斤)涌入市场。[3] 因此,甘油被视为生物废弃物,也是生产高价值化学品的十大生物质衍生平台分子之一(美国能源部列出)。[4] 在适当条件下,甘油可以选择性地氧化或还原成精细化学品,如丙烯醛、[5] 二羟基丙酮、[6] 乳酸、[7] 丙烯酸、[8] 1,2-丙二醇、[9] 或 1,3-丙二醇。[10] 鉴于这种潜力,人们投入了大量精力来探索一种有效的催化剂,以实现高转化率和对目标产品的高选择性。金/碳催化剂是早期的例子之一,它只有在 NaOH 存在下才有效。因此,氧化产物通常是钠盐,这使得后净化过程非常困难。[11] 此后,人们致力于寻找不使用 NaOH 的替代催化剂。最近有报道称,Mn 2 O 3 可以在 140 °C 和 1 MPa O 2 下将甘油转化为乙醇酸,选择性为 52.6%。[12] 然而,开发高效、高选择性催化剂将甘油转化为特定产品仍然是一项重大挑战。因此,选择性甘油 CC 裂解不仅具有重要的科学意义,而且考虑到相关产品的高价格(例如,每公斤乙醇醛 9 美元,比反应物甘油贵 80 倍),也具有经济意义。光催化已被公认为在非常温和的条件下进行 C C 键裂解反应的一种有前途的策略。[13]
如今,人工智能(AL)芯片在我们的日常生活中广泛使用,例如面部识别,文本识别和自然语言处理。尤其是,低功率芯片迫切需要边缘计算。当前的商业芯片几乎完全是基于传统的von Neumann架构的深度学习算法的加速器。然而,由于处理单元和记忆的物理分离,这种巨大功耗,高潜伏期和低区域效率的严重挑战。近年来,受生物大脑启发的神经形态计算范例可以通过硬件电子设备(例如,CMOS电路或新兴的Nanodevices)实施,并吸引了全球研究人员的很多关注,归因于它们的潜在优势,高能量效率,质量高度,质量高,并构成众多的记忆,以及高度的计算。然而,神经形态系统在大规模生产之前仍面临一些技术挑战。此问题旨在加深我们对制造过程,设备物理,建筑,算法和大规模神经形态系统的基本理解。
在后一种情况下。这些能量分散机制不仅对催化的量子效率具有深远的影响 - 显然对储能应用至关重要,而且对反应的催化转换率也具有最重要的意义。6给定光催化剂 - 猝灭剂组合的淬火和松弛之间的分馏用于光催化反应发育中的机械询问,以识别或确认哪些分子物种与兴奋的光催化剂相关。一种常见的技术是发光淬火(船尾– Volmer)分析,该分析测量了给定淬火物种的PC*淬火率,这是其浓度与辐射衰减过程竞争的函数。7实际上,该技术已经发现了提供机械洞察力的应用,并且最近已将其作为一种高通量筛选技术,用于发现新型的合成有机转化。8,9
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
这个博士学位项目将使用可调,清洁,单步且环保的合成过程来重点介绍低影响和可持续2D材料的设计和开发。研究将采用综合方法。它涉及设计,工程师和验证高性能2D纳米材料,用于绿色氢的生产。2D导数将通过环境良性,快速和可控的清洁合成技术(这是纳米材料制造方法的最前沿)传递。该项目将利用与材料合成(CHFS),表征(Raman,XRD,AFM,SEM,SEM,UV-Vis-vis-Spectroscopicy,stepte-State和Time Resolved Spectroscopicy),H 2生产和测试(太阳光像和气体层次)相关的研究设施。