蓝光危害函数表示人眼对 380 nm 至 500 nm 以上蓝光危害的相对光谱敏感度(峰值为 435-440 nm)。21-23 最近发表的通过体外和体内研究蓝光影响的研究证明了蓝光加权函数对于评估光发射到达视网膜所带来的风险的重要性,一些研究作者认为,最初为强光照明系统设定的当前暴露限值应进行修订,以解决潜在的与显示器相关的蓝光影响,并确定处于危险中的人群(儿童、有既往疾病的人等)17-19
yba 2 Cu 3 O X,T C高于77 K的第一个超导体是结构中具有CUO链和平原的最复杂的铜质之一。yba 2 Cu 3 O 7(YBCO)的外径略微过量的行为,并且很难进一步掺杂,因为Cuo链中的所有晶格位点都被占据。我们已经种植了YBCO和BiLayer LA 0的高质量单晶膜。67 SR 0。 33 MNO 3(LSMO)/YBCO在两种情况下都表现出超导性。 光发射光谱揭示了不同的表面和散装电子结构;差异减少了双层。 在价带和核心水平光谱中观察到跨双层界面的电荷转移的证据,表明YBCO中有过多的条件。 虽然在双层中存在磁性的超导性令人困惑,但在YBCO中达到过多的政权的途径却打开了一个新景观,以探测非常规超导性的外来物理学。67 SR 0。33 MNO 3(LSMO)/YBCO在两种情况下都表现出超导性。光发射光谱揭示了不同的表面和散装电子结构;差异减少了双层。在价带和核心水平光谱中观察到跨双层界面的电荷转移的证据,表明YBCO中有过多的条件。虽然在双层中存在磁性的超导性令人困惑,但在YBCO中达到过多的政权的途径却打开了一个新景观,以探测非常规超导性的外来物理学。
固态光化学描述了对多种工业的重要性驱动反应的广泛。紫外线固化的聚合已在生产中司空见惯,用于打印,涂料和添加剂制造。1光降解是食品科学,药物,聚合物,太阳能电池和空间材料的障碍。2 - 5光电半导体被用作异质光催化剂的异质光催化剂,以提高各种反应的效率,6长期用作光发射二极管和光伏特细胞。7 - 9这些应用都是一个积极的科学研究领域,因为社区正在寻找更绿色的过程和能源解决方案。光化学在光合作用,皮肤损伤和视力等生物系统中也很普遍。10
自 2010 年以来,他一直致力于通过分子束外延 (MBE) 制造此类材料,并通过角度和自旋分辨光发射和逆光发射光谱 (PES 和 IPES) 对其进行原位表征。这项研究是在内部或大型设施(如位于的里雅斯特的 Elettra 同步加速器光源)上完成的,利用了 X 射线磁圆二色性 (XMCD) 或近边 X 射线吸收精细结构光谱 (NEXAFS) 等特殊技术。与米兰意大利理工学院纳米科学与技术中心的合作得到了认可,重点是表征用于有机电子和有机太阳能电池的可溶液加工新型材料。
摘要 — 等离子体中的尘埃粒子由于不断吸收周围环境中的自由电子和离子而获得电荷。根据尘埃的大小和数量密度,这会显著改变局部等离子体以及全局放电特性。本文介绍了当尘埃以不同的数量密度和大小被引入等离子体时,源自氩等离子体的光发射变化以及放电电特性变化的测量结果。测量放电的电子信号(包括电极电位、电流和导数信号)可以确定复阻抗,从而确定放电等效电路的变化。将实验结果与二维尘埃等离子体流体模型的数值结果进行了比较。
摘要:将氧化物的聚类模型嵌入具有点电荷的簇模型以及嵌入的扩展,这些嵌入考虑了阳离子的空间范围,以强调这种嵌入对相对电离和激发能在核心水平光谱中测量的后果。发现,氧化物的电子结构的依赖性和不同水平的相对能量仅取决于嵌入,并且相对简单的嵌入可能足以提供足够的模型来确定核心水平光谱。这与电离的绝对值不同,如预期的那样,它们在很大程度上取决于扩展晶体的细节。但是,在光发射中测量的结合能的相对值比绝对值更感兴趣。
材料研究|创意解决方案|自然领导经验丰富的研究科学家,着重于开发量子材料先驱在角度分辨光发射光谱研究中对量子薄膜的研究,敏锐地关注数百万美元的科学项目的领导才能更好地了解量子材料的原子和电子结构之间的相互作用。热情解决问题,研究问题,确定根本原因以及开发/实施解决方案。擅长有效地领导和交流不同的团队,业务利益相关者和其他部门,以确保无缝执行和持续支持。不断识别替代方案和解决方案以降低成本并满足不断变化的需求。
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
光电器件的发展需要在新材料体系和新器件机制上不断突破,需求从信号强度和响应度的检测转向对偏振态信息灵敏度的探索。二维材料是一个丰富的家族,具有多样化的物理和电子特性,可用于偏振器件,包括各向异性材料、谷电子材料和其他混合异质结构。在本文中,我们首先回顾了二维材料中偏振光相关的物理机制,然后详细描述了光学和光电特性,包括拉曼位移、光吸收和光发射以及功能光电器件。最后,对未来的发展和挑战进行了评论。大量的二维材料及其异质结构为偏振相关的科学发现和光电器件应用提供了希望。
识别电子,自旋和晶格自由度之间非平衡能量转移机制的微观性质对于理解超快现象(例如操纵飞秒时间表上的磁性)至关重要。在这里,我们使用时间和角度分辨的光发射光谱法可以超越经常使用的集合平均视图,从而在Quasiparticle温度下进行的非平衡动力学视图。我们显示的铁磁Ni表明,非平衡电子和自旋动力学表现出明显的电子动量变化,而磁交换相互作用仍然是各向同性的。这种高光是晶格介导的散射过程的影响,并为揭开旋转晶格角动量转移的仍然难以捉摸的显微镜机理打开了途径。