研究结构缺陷及其对光学材料光学性质的影响是至关重要的,因为在制备用于显示应用的材料时会涉及不同的方法。镧系离子掺杂是一种简单的结构探测策略,它有助于识别结构缺陷。使用 Pechini (C 2 SP) 和水热法 (C 2 SH) 制备纯和铽 (Tb 3 +) 掺杂的 Ca 2 SiO 4 (C 2 S) 粒子。从 SEM 图像中可以看出,Tb 3 + 掺杂的 C 2 SP 粒子比 C 2 SH 粒子更高度聚集。TEM 研究证实,在 180 和 200 C 的高水热温度下制备的 C 2 SH (C 2 S:180H 和 C 2 S:200H) 的粒度减小。 Tb 3 + 掺杂的 C 2 S:180H 和 C 2 S:200H 发生荧光发射猝灭。与 Tb 3 + 掺杂的 C 2 SP、C 2 S:180H 和 C 2 S:200H 相比,在 140 C 下制备的 Tb 3 + 掺杂的 C 2 SH 的发射强度较高。在 X 射线光电子能谱 (XPS) 价带谱中,实验评估了与纯 C 2 SP 和 C 2 S:180H 四面体硅酸盐的上能级价带谱相关的 O2p 轨道的变化。由于硅酸盐单元的扭曲导致对称性降低,从而猝灭了发射,这已由 XPS 价带谱和 Tb 3 + 发射线证实。这项研究表明,与水热法相比,Pechini 法更适合制备 Tb 3 + 掺杂的 C 2 S 荧光粉,特别是在高温下用于固态显示器和闪烁体应用。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
人们对聚二乙炔的机械荧光变色行为进行了深入研究:通过二乙炔前体的光聚合获得的蓝色非发光固相在机械刺激下转化为红色发光固相。受这些化合物作为微尺度力探针的巨大潜力的启发,机械荧光变色在微藻生物技术中得以实现。事实上,微流控芯片中的机械诱导可以削弱细胞包膜并促进微藻产生的高附加值化合物的提取。据报告,基于聚二乙炔的机械荧光变色传感器能够检测微通道中施加在微藻上的应力。设计了一种三乙氧基硅烷二乙炔前体,它在紫色低发射相中光聚合,并在机械应力下转化为红色高发射相。此后,制定了一项协议,以化学方式在微流体通道中接枝一层聚二乙炔层,并最终证明,在有限区域内压缩莱茵衣藻微藻时,摩擦应力会通过聚二乙炔的机械荧光变色响应显示出来,导致荧光显著增强,最高可达 83%。这种微尺度力探针原型为微流体环境中的微尺度应力检测奠定了基础,它不仅适用于微藻,还适用于任何机械响应的细胞样本。
据报道,通过直接测量原位施加不同量机械刺激后的发射变化,可以在微/纳米尺度上通过机械荧光变色活性进行力感应。[24,30,31,33–36] 然而,仍有一个问题有待探索,那就是材料的恢复。发射变化与施加的力有关,是由材料的形态变化引起的。[20–50] 这意味着,在最初施加力之后,后续的传感事件需要恢复原始形态——这个过程并不那么简单,因为这通常需要热退火[38]、溶剂熏蒸[25,27]或重结晶。 [20–22,37] 在基于 Au(I) 复合物 [28] 芘 [39,40] 蒽 [41,42] 四苯乙烯 [43,44] 吲哚基苯并噻二唑 [45] 三苯胺 [46] 硼配位 β -二酮复合物 [47] 和六硫代苯 [48] 的衍生物中观察到了自我恢复,即在环境条件下被划伤/研磨的材料自发恢复到初始状态(吸收、发射和形态)。然而,许多 MFC 活性材料尚未被开发用于多用途力传感应用,这不仅是因为此类研究所需仪器的复杂性 [24,30,31,33–36],还因为缺乏导致可逆性的分子设计 [40] 和对自我恢复机制的清晰理解。[30,45]
视网膜是中枢神经系统(CNS)的扩展,与中枢神经系统共享共同的胚胎学起源。神经感觉视网膜和中枢神经系统从神经外胚层发展[1]。使用非侵入性视网膜成像方式诊断和监测神经退行性疾病的兴趣越来越大。多发性硬化症(MS)是一种自身免疫性疾病,其特征是CNS的炎症,脱髓鞘以及神经元和轴突变性,可能会出现视觉症状。视网膜变化也可能反映神经退行性疾病[2-6]。研究表明,多发性硬化症中不同视网膜神经层的感情。green等人在MS中具有视网膜组织,并描述了多发性硬化症中神经节和内部核细胞层核损失的视网膜广泛的视网膜[7]。尽管MS是一种脱髓性疾病,人类视网膜缺乏髓磷脂,但炎症
在芝加哥大学的 Bernien 实验室,我们用单个原子构建量子计算机。量子计算听起来像是科幻小说中的东西,但自 20 世纪 90 年代末以来,小型量子计算机就以某种形式存在了。如今,量子计算机正以指数级的速度发展,世界各地的研究人员都在尝试新的想法来推进这项激动人心的技术。我们可能不应该指望很快就能有家用量子计算机,但量子计算的实用性已经发展到数十家初创公司,甚至多家大公司都在构建自己的量子计算机的地步。他们中的许多人甚至允许您租用他们的计算机来运行自己的量子程序!然而,由于这些系统的尺寸小、错误率高,量子计算仍然是一种正在开发的技术。因此,人们常说我们正处于嘈杂的中型量子 (NISQ) 时代。走出这个时代需要许多技术进步,我们的实验室正在积极致力于解决一些阻碍基于原子的量子计算系统的问题。
摘要 分析动态细胞内生物过程的一个挑战是缺乏足够快速且特异性的方法来扰乱细胞内蛋白质活动。我们之前通过在功能域之间插入蓝光控制的蛋白质二聚化模块,开发了微管加末端追踪蛋白 EB1 的光敏变体。在这里,我们描述了一种先进的方法,可以在单个基因组编辑步骤中用这种光敏变体替换内源性 EB1,从而使这种方法可以在人类诱导多能干细胞 (hiPSC) 和 hiPSC 衍生的神经元中使用。我们证明,在发育中的皮质神经元中,急性和局部光遗传学 EB1 失活会诱导生长锥周围微管解聚,随后导致神经突回缩。此外,前进的生长锥会被蓝光照射区域排斥。这些表型与神经元 EB1 同源物 EB3 无关,揭示了 EB1 介导的微管末端相互作用在神经元形态发生和神经突引导中的直接动态作用。
对地球轨道上的空间物体进行表征是一项重要任务,特别是随着太空交通的增加和太空交通管理的出现。正确理解物体的形状、大小和姿态对于预测其未来行为至关重要。光变曲线越来越多地被用于表征物体,方法从简单的回归分析到复杂的人工智能解决方案。本文介绍和演示的方法是一种基于卷积神经网络的机器学习算法,能够表征物体的几何形状、姿态和材料等物体参数。该方法旨在成为一种灵活的分类方法,可以扩展到所有轨道和任何类型的物体,包括碎片。本文介绍了正在进行的研究的中间结果,展示了多分类和多分支分类模型的使用。结果表明,该方法可以从单个完整的夜间光变曲线中成功地以超过 80% 的准确率对地球同步轨道上物体的形状、大小、姿态和主要材料进行分类。
1 天体物理学小组,基尔大学,基尔,斯塔德郡 ST5 5BG,英国 2 马克斯普朗克研究所,Justus-von-Liebig-Weg 3,D-37077 哥廷根,德国 3 尼古拉斯·哥白尼天文中心,波兰科学院,ul。Rabia´nska 8, PL-87-100 Toru´n, 波兰 4 鲁汶天主教大学天文学院,Celestijnenlaan 200D,B-3001 Leuven, 比利时 5 圣地亚哥州立大学天文系,5500 Campanile Drive,San Diego,CA 92182-1221,美国 6 维拉诺瓦大学天体物理和行星科学系,800 Lancaster Avenue,Villanova,PA 19085,美国 7 天体物理中心,哈佛和史密森尼,60 Garden Street,Cambridge,MA 02138,美国 8 伯明翰大学物理与天文学院,伯明翰 B15 2TT,英国 9 奥胡斯大学物理与天文系恒星天体物理中心(SAC),Ny Munkegade 120, DK-8000 奥尔胡斯 C,丹麦
1 天体物理学小组,基尔大学,基尔,斯塔德郡 ST5 5BG,英国 2 马克斯普朗克研究所 Sonnensystemforschung,Justus-von-Liebig-Weg 3,D-37077 哥廷根,德国 3 波兰科学院尼古拉斯·哥白尼天文中心,ul。 Rabia´nska 8, PL-87-100 Toru´n, 波兰 4 鲁汶天主教大学恒星学研究所,Celestijnenlaan 200D,B-3001 Leuven,比利时 5 圣地亚哥州立大学天文系,5500 Campanile Drive,San Diego,CA 92182-1221,美国 6 维拉诺瓦大学天体物理和行星科学系,800 Lancaster Avenue,Villanova,PA 19085,美国 7 哈佛和史密森天体物理中心,60 Garden Street,Cambridge,MA 02138,美国 8 伯明翰大学物理与天文学院,伯明翰 B15 2TT,英国 9 奥胡斯大学物理与天文系恒星天体物理中心 (SAC),Ny Munkegade 120,DK-8000丹麦奥胡斯 C
PPB1 S 1 3.64 340 0.448 HL(0.694) S 2 4.08 303 0.045 H-L+1(0.692) S 3 4.71 263 0.250 H-L+2(0.689) PPB2 S 1 3.63 340 0.437 HL(0.693) S 2 4.23 292 0.250 H-L+1(0.690) S 3 4.64 266 0.137 H-L+2(0.694) PPB3 S 1 3.66 338 0.428 HL(0.694) S 2 4.11 301 0.084 H-L+1(0.696) S 3 4.62 268 0.258 H-L+2 (0.693) PPB4 S 1 3.58 346 0.588 HL (0.693) S 2 4.01 308 0.054 H-L+1 (0.690) S 3 4.56 271 0.099 H-1-L (0.510)、H-1-L+1 (0.415)、H-1-L+2 (-0.102)、H-1-L+3 (0.109)