可生物降解的纳米材料可以显着改善纳米医学的安全性。锗纳米颗粒(GE NP)是作为生物医学应用的有效光热转化器而开发的。ge NP由飞秒激光在液体中合成的液体通过氧化机制迅速溶解在生理样环境中。GE纳米颗粒的生物降解在体外和正常组织中保存在半衰期短达3.5天的小鼠中。GE NP的生物相容性通过血液学,生化和组织学分析在体内确定。在近红外光谱范围内GE的强烈光吸收可在静脉注射GE NP后对体内植入的肿瘤进行光热治疗。光热疗法导致EMT6/P腺癌肿瘤生长的3.9倍降低,而小鼠的存活显着延长。在纳米材料的静脉内和肿瘤内施用后,GE NP(808 nm处的7.9 L G - 1 cm-1)的出色质量渗透使骨骼和肿瘤具有光声成像。因此,强烈吸收近红外的生物降解纳米材料对晚期治疗学有希望。
对最近发现的高温超导体THH 10提出了对涡旋阶段和涡流动力学的全面研究,其在170 GPA时T C = 153 K。获得的结果强烈表明涡流相变的二维(2D)特征在Thh 10中。激活能在低场区域的磁场上产生对数依赖性u 0 ln(h),而在高场面中,幂律依赖性u 0〜H-1在高场区域中,向从2D状态到三维集体固定方案的交叉信号。此外,固定力局部依赖性展示了在t c附近的表面型固定的优势。热激活能(U 0),衍生在热活化的流动流理论中,将非常高的值与Ginzburg Number GI = 0一起以高于2×10 5 k的速度。039–0。085,仅比Bisrcacuo酸盐和10-3-8个基于铁的超导体家族低。这表明热闪光在超水的涡旋晶格的动力学中的巨大作用,其物理学类似于基于铁和铜的高温超导体的物理学。
以空间不均匀的光学领域为特征的结构化光在光学通信,传感,显微镜,操纵和量子信息中发现了丰富的应用。虽然已经在线性光学元件中对结构化光的产生进行了广泛的研究,但非线性光学过程,尤其是在二维(2D)材料中,是一种新兴的替代方案,用于在较短的波长下生成结构化光。在这项工作中,我们从理论上证明,可以在第二谐波频率下使用2D基于基于材料的跨质面体,这些频率可以在径向和方位角极化的光束和涡旋束和涡流束上产生,并在第二谐波频率下产生相同的过渡金属二石化二核二核元素元素。对各向异性非线性元原子的翻译和方向的操纵表现出三倍旋转对称的晶体结构会诱导强的非线性自旋轨道耦合,从而可以同时控制第二次Harmonic Generation的空间相位和极化。提出的非线性过渡金属二分裂元化元素跨表面有望在非线性的结构化光的片上整合。
使用机载激光雷达系统收集了路易斯安那州屏障岛综合监测 (BICM) 计划的地形测量数据。这项研究是美国地质调查局 (USGS) 和路易斯安那州自然资源部 (LDNR) 的合作成果。术语“激光雷达”(源自“光检测和测距”)是指使用激光脉冲进行距离分辨远程测量的主动光学技术。激光雷达传感器与反射目标之间的距离是根据特征明确的激光脉冲发射和返回探测器之间的时间(即双向传播时间)以及光在传输介质中的速度计算得出的。四种不同的激光雷达系统被用于绘制路易斯安那州沿海地区的地图。每个激光雷达系统的硬件略有不同。因此,每个系统都开发了独特的处理软件。所有系统的共同点是应用和集成高精度差分 GPS 技术和数据处理。本节介绍了每个激光雷达系统和处理技术,以及生成 XYZ 数据的处理步骤。讨论的四个系统是:ATM(全地形测绘仪,NASA)、EAARL(实验性先进机载激光雷达,NASA)、CHARTS(紧凑型水文机载快速全程测量,美国陆军工程兵团)和 Leica ALS50-II(3001,Inc)。
睡眠惯性是指在醒来后立即经历的短暂的警觉性和表现力受损时期。人们对这一现象背后的神经机制知之甚少。更好地了解睡眠惯性期间的神经过程可能有助于深入了解觉醒过程。在生物夜晚从慢波睡眠中突然醒来后,我们每 15 分钟观察一次大脑活动,持续 1 小时。使用 32 通道脑电图、网络科学方法和受试者内设计,我们评估了对照和多色短波长丰富光干预条件下各频带的功率、聚类系数和路径长度。我们发现在对照条件下,觉醒大脑的典型特征是全局 theta、alpha 和 beta 功率立即降低。同时,我们观察到 delta 波段内的聚类系数下降和路径长度增加。醒来后立即暴露在光线下可以改善聚类变化。我们的结果表明,大脑内的长距离网络通信对于觉醒过程至关重要,并且大脑可能会在这种过渡状态下优先考虑这些长距离连接。我们的研究突出了觉醒大脑的一种新神经生理学特征,并提供了一种光在醒来后改善表现的潜在机制。
Fujiwara-Moritani 反应对当代 C − H 活化方案的出现做出了重大贡献。尽管传统方法适用于不同领域,但相关的反应性和区域选择性问题使其变得多余。这种示范性反应的复兴需要开发一种能够同时控制反应性和区域选择性的机械范式。促进烯化所需的高热能通常会导致多位点功能化。为此,我们建立了一个光氧化还原催化系统,该系统由钯/有机光催化剂合并而成,以明确的区域选择性方式对各种芳烃和杂芳烃进行氧化烯化。可见光在执行“区域分辨”的 Fujiwara-Moritani 反应中起着重要作用,不需要银盐和热能。该催化系统还适用于在各自导向基团 (DG) 的帮助下进行近端和远端烯化,这意味着该方案具有多功能性,可以参与整个 C(sp 2 ) − H 烯化范围。此外,通过后期功能化简化天然产物、手性分子、药物的合成和多样化,凸显了这一可持续方案的重要性。通过控制反应、动力学研究和理论计算,在机制上建立了这种区域选择性转化的光诱导实现。
相干态是一个重要的概念,其特征值关系为 ˆ a | α = α | α as,是研究和描述辐射场的一个非常方便的基础,它是由薛定谔于 1926 年在对量子谐振子的研究 1 – 4 中首次提出的。然而,基于相干态和光电检测的量子相干理论已由 Glauber、Wolf、Sudarshan、Mandel、Klauder 等人在 20 世纪 60 年代初发展起来,它与经典辐射场中的量子态最为相似,因此被认为是经典力学和量子力学的边界。Glauber 的创新工作于 2005 年获得诺贝尔奖,以表彰他。事实上,相干态已经成为量子物理学中最常用的工具之一,在各个领域,特别是在量子光学和量子信息中发挥着非常重要的作用。相干态使我们能够使用 Wigner 等人早期开发的准概率来描述光在相空间中的行为 7 。相干态的重要性在于它们的概括已被证明能够呈现非经典辐射场特性 8 – 10 。激光作为一种极具潜力的相干光的表现标志着对光与物质之间非线性相互作用的广泛研究的开始 11 。这可以通过实验通过将相干态穿过克尔介质来实现,这是由于出现了可识别的宏观相干态叠加,即所谓的猫态 12 。当克尔介质的入口状态是正则相干态时,Kitagawa 和 Yamamoto 引入了克尔态作为克尔介质的输出 13 。克尔效应会产生正交压缩,但不会改变输入场光子统计特性,即它仍然是泊松分布,这是正则相干态输入的特性,用于产生相干态的叠加 14 – 16 。这里值得注意的是,光在克尔介质中的扩散也以非谐振荡器样本为特征,非谐项取为 ˆ np ,其中 p 为整数(p > 1)17 , 18 。该振荡器模式可以被评估为描述注入具有非线性磁化率的传输线(例如光纤)的相干态的演变。用相干态的量子力学描述的激光束在通过非线性介质时会经历各种复杂的改变,包括量子态的崩溃和复活。在任何线性或非线性的演变中,耗散总是会发生。耗散效应通常导致振幅的减小,但是,如果相互作用发生在原子尺度上,量子效应就会很显著 19。非线性相干态是标准相干态最突出的概括之一 20 。一个合适的问题是:如果初始相干态的时间演化受到时间相关谐振子哈密顿量的影响,并与时间相关外部附加势 21 – 24 耦合,会发生什么情况?时间相关谐振子有很多种,例如参数振荡器 11、25 、卡尔迪罗拉-卡奈振荡器 26、27 和具有强脉动质量的谐振子 28 。
第 2 章。光纤。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1 光的本质。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 2.1.1 作为电磁波的光。。。。。。。。。。。。。。。。。。。。16 2.1.2 极化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.1.3 干扰。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.2 在光纤上传输光。。。。。。。。。。。。。。。。。。。。。。。。。.25 2.2.1 玻璃特性 .......................29 2.2.2 传输容量 .........................33 2.2.3 操作原理 ...........................33 2.2.4 光纤折射率分布 ........................36 2.3 光在多模光纤中的传播 .........。。。。。。。。。。。。39 2.3.1 斯涅尔定律。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.2 临界角 ............。。。。。。。。。。。。。。。。。。。。41 2.3.3 数值孔径 (NA)。。。。。。。。。。。。。。。。。。。。。。。。。。42 2.3.4 传播模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.3.5 模式耦合。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50 2.3.6 模态噪声。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 2.3.7 命名模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 2.4 单模传播。。。。。。。。。。。。。。。。。。。。。。。。。。。。56 2.4.1 单模特性 ...... div>............。 。 。 。 。 。 。 . 57 2.4.2 单模光纤中的色散 . . . . . . . . . . div> . . . . . . . . . . . 。 59 2.4.3 模式划分噪声。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> 67 2.4.4 反射和回波损耗变化 . . . . . .。。。。。。。.57 2.4.2 单模光纤中的色散 .......... div>...........。59 2.4.3 模式划分噪声。。。。。。。。。。。。。。。。。。。。。。...... div>67 2.4.4 反射和回波损耗变化 ............< div> 。。。。。。..67 2.4.5 非线性高功率效应 ..。。。。。。。。 < /div>.............69 2.5 塑料光纤 (POF) ... div>............。 。 。 。 。 。 。 。 。 。 。 。 。 74 2.5.1 POF 研究。 。 。 。 。 。。。。。。。。。。。。。。74 2.5.1 POF 研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.76 2.6 硬质聚合物(塑料)包层(二氧化硅)光纤 (HPCF) .........< div> 。。。。。。76
第一单元记录仪器 9 电生理学和生物电位记录 生物电位的起源 – 生物电位电极 – 生物放大器 – ECG – EEG – EMG – PCG – EOG – 导联系统和记录方法 – 典型波形和信号特性。 第二单元测量和分析技术 9 血流测量 – 射线照相 – 指示染料稀释 – 热对流 – 磁血流率 – 超声波血流量计 – 血压计 – 血气分析仪 – 血氧仪 – 自动分析仪 – 电泳 – 比色计 – 分光光度计 – 火焰光度计。第三单元治疗设备和病人安全 9 刺激器 – 除颤器 – 起搏器 – 透热疗法 – 呼吸器 – 血泵呼吸机 – 血液透析机 – 激光在医疗保健中的作用 – 病人安全 – 宏观 – 微观冲击 – 预防措施 – 无地球病人监护。 第四单元医学成像 9 X 射线成像和 CT 扫描 – 应用和 X 射线治疗 – CAT 扫描 – MRI – PET – 超声波物理学 – 超声波成像 – A 扫描和 B 扫描显示 – 多阵列扫描 – M 型扫描 – 超声波扫描热成像系统的优点和缺点。 第五单元医学领域的计算机应用 9 医学中的计算机应用 – 病人监护系统 – 内窥镜装置 – 无线药丸 – 远程医疗和医学信息学。
1. 简介 激光加工是一种改进所选材料性能和服务特性的先进工艺。激光在材料加工中的可行性和优势取决于它能够以非接触方式向产品表面提供严格剂量和高强度的能量。激光技术可用于加工物体的远程区域和局部区域,且不会对材料产生振动和其他负面影响。这些和其他显著优势为激光加工在当前和未来具有更大的应用潜力。由于其聚焦激光辐射的能量输入极其局部集中,激光材料加工可为加工部件提供比任何其他热源更高的能量密度。因此,激光材料处理不仅可用于激光焊接或切割,还可用于改变材料的物理和机械性能。各种论文和专著 [1-3] 介绍了激光加工物理特性领域的当前成就。许多参考书 [4-6] 详细描述了激光设备在不同生产技术中的应用。研究表明,金属材料的重要特性,如抗拉强度、疲劳强度和耐磨性,都是结构敏感的,也就是说,可以通过激光加工适当改变材料结构来控制。只有少数研究通过控制材料结构的变化来软化材料 [7-10]。即使是“激光退火”这个术语,在文献中,从更广义上讲,是指通过不同持续时间的激光辐射改变固体的结构,通常是指通过纳秒持续时间的激光辐射对半导体结构进行脉冲定向结晶。