在过去的几十年中,人们一直致力于探索具有强大光学增益和优异光物质相互作用特性的新兴材料,以开发光子和光电子器件,包括但不限于微激光器、单光子发射器、发光二极管、光电探测器等。先驱者们致力于先进的光学增益材料,涵盖从经典的 II-VI/III-V 半导体、新兴的二维半导体材料、有机染料到卤化物钙钛矿,这些材料对于优化器件性能和拓展前沿光子学/光电子学有着巨大的希望。同时,将这些材料打造成基础科学和工业技术的有力工具的科学和工程挑战仍然存在。该领域的快速发展有必要重点介绍其最新进展和挑战,这正是本期《中国科学材料》组织举办的及时专题“光增益材料在增强光-物质相互作用中的应用”的目的。此次重点介绍的部分原因是受到在新加坡举行的第十届国际先进技术材料会议(ICMAT 2019)期间组织的一次研讨会的启发,由所有客座编辑共同主持。光增益材料的广泛适用性高度依赖于固有的晶体和光学质量,与先进的制造技术密不可分。刘等人 [1] 的综述集中于卤化物钙钛矿半导体各种生长方法的最新研究。特别是陈等人。 [2] 提出在微流体反应器中连续流制备掺杂钙钛矿纳米晶体,这使得前体离子能够在密闭微通道中与稳定封闭的环境进行有效的物理混合,从而实现高质量的合成。控制
相干技术目前正在深入讨论短距离内的光学互连。本文报告了先前工作的进度,该工作分析了从C-到O带光学方面的好处,以实现数字信号处理。在这里,我们研究了将连贯的方法适应已建立的数据中心互连技术(PSM4)的可行性。这种类似PSM4的实现带来了对激光漂移的弹性大大提高的好处,从而减少或消除了对温度稳定激光器的需求,这通常假定是相干收发器的需求。分析取决于SIGE光子BICMOS技术中相干接收器的先前实验实现的部分模拟参数。此外,我们还利用了有关在20 nm波长窗口上优化O-带2D光栅耦合器在效率和低极化依赖性方面的最新结果。我们将这些耦合器确定为启用类似于PSM4的实现的构建块。©2023作者。代表日本应用物理学会出版,由IOP Publishing Ltd
有机激光已经经历了数十年的发展。已经证明了具有出色的光学增益特性的无数材料,包括小分子,树枝状聚合物和聚合物。也已应用各种谐振器几何形状。在共享有机材料的解决方案加工性和机械功能特征的优势时,有机光增益介质还提供了有趣的光学特性,例如通过化学功能化和固有的大型光学增益系数来可调性。他们为在生物成像,医学,化学和生物传感,抗抗议应用或展示领域的不同应用提供了前景。然而,由于有机半导体的固有缺点,例如,适度的载流子迁移率,长期寿命的激发状态吸收以及源于设备中的额外损失(例如,金属电极吸收,金属电极吸收),导致电泵送有机激光器的实现仍然是一个挑战。在此,讨论了有机激光器的过去发展,强调了材料和空腔在电泵送有机激光器的目标方面的重要性。讨论了最新的进展和解决挑战的可能方法。
垂直腔体发射激光器(VCSEL)是高性能计算系统,数据中心和其他短距离光学网络中高速和功率短得分光学互连(OIS)的首选光源。这样的OI通常在0至70°C的温度范围内运行。但是,基于VCSEL的OIS的某些新兴应用,例如在某些军事系统中的汽车光学网络和光网络中,需要在温度范围更大的温度范围内运行,例如从 - 40到125°C。VCSEL是OI温度最敏感的组件,并且成本和功率效率所需的未冷却/未加热的操作需要降低温度依赖性的VCSEL,在温度范围更大的情况下运行。VCSER性能的温度依赖性源于光谱和共振波长偏移之间的光学增益和不匹配的变化。减轻这些效果的方法包括使用具有适当增益式失调的VCSEL和增益工程,以扩大光学增益频谱。本文研究了在大温度范围内优化运行的850 nm VCSEL。关键研究包括阈值 - 旧电流与性能参数(纸张A)的相关性和chire QW VCSels的设计,以稳定跨温度(Pa-per)。洞察设计为极端环境设计强大的VCSEL。
血浆分散系统的正频和负频率分支,以及来自等离子体频率ωp的状态密度的差异。最强的共振发生在与直接带间跃迁相关的调制频率的调制频率下。高阶共振与相关机制相关,但调制频率较低。管理这些共鸣的数学形式主义是希尔的方程式。我们证明了各种周期性调节方案的这些共振,并提供了一个通用的扰动公式(从山丘方程理论的角度来看,它本身就具有弱调制振幅的限制,在损失的情况下,共振宽度限制了。我们发现使用时间调节的等离子介质来增强光学增益的信息。
我们提出了一种在不依赖于任何对称性或拓扑的晶格模型中实现零模式的方法,这些对称性或拓扑是对任何类型和强度的大部分中的无序都有坚固的。这种无对称的零模式(SFZM)是通过将带有零模式的单个位点或小群集连接到散装的单个位点或小群集而形成的,该模式用作扩展到整个晶格的“核”。我们确定了该边界与大块之间耦合的要求,这表明这种方法本质上是非遗产的。然后,我们提供了几个示例,这些示例具有任意或结构化的批量,在整体连续体中形成频谱嵌入的零模式,Midgap零模式,甚至还原耦合或障碍转移拓扑拓扑角状态的“ zeroness”。专注于使用光子晶格的可行实现,我们表明,当将光学增益应用于边界时,可以将所得的SFZM视为单个激光模式。
在这里,我们对低对称性(3D)导电材料的线性电形效应进行了深入的理论分析。我们的研究确定了对线性电形效应的两个不同动力学贡献:一种旋转的Hermitian(保守)作品和一个可以发起光学增益的非遗传学术语。我们集中于沿着三角形轴静态电偏置的32(d 3)分组的3D材料的研究。我们的研究表明,掺杂的三角醇舍列留毒具有有希望的特性,其旋转电响应响应为实现电偏发电磁隔离器的潜力提供了潜力,并诱导了显着的光学二科主义。最值得注意的是,在足够大的静态电偏见下,泰勒里姆的非富尔米特电响应响应可能会导致光学上的增益。使用第一个原理计算,表明n掺杂的柜员是特别有前途的,因为它可以比更常见的p掺杂的柜子托管明显更大的浆果曲率偶极子。
摘要:光学增益的准确测量对于筛选材料作为薄膜激光应用的可行活动介质至关重要。通常使用可变条纹长度(VSL)方法测量净模态增益,该方法在过去几十年中已经进行了广泛的研究。在这项工作中,我们提出了一种替代方法,我们将其命名为散射发射概况(SEP)方法,以测量净模态增益。它依赖于从泵条带照亮的膜表面散布的放大自发发射(ASE)的收集。通过使用适当的设置,新方法可以更快地测量净模态增益,同时提供更准确的增益值。在本文中详细介绍了提取净模态增益的设置和算法,并在铅卤化物钙钛矿膜上进行了证明。显示了条纹长度对测量增益值的影响。通过两种不同的钙钛矿膜进行的增益测量,通过自旋涂层或热蒸发制造,确认了SEP方法的广泛适用性。最后,我们显示了SEP方法与VSL测量值的定量比较,并突出了每种方法的优点和缺点。
摘要:三维有机金属金属卤化物钙钛矿是光电应用的出色材料,由于其特性,解决方案的加工性和成本效益。但是,缺乏环境稳定性极大地限制了它们的实际应用。在本文中,作者报告了使用Divalent N1-甲基丙烷-1,3-二千摩峰(N-MPDA)阳离子作为有机隔离器的稳定厘米长的二维(2D)混合钙钛矿(N-MPDA)[PBBR4]单晶。生长的单晶表现出稳定的光电性能,低阈值随机激光和多光子发光/多谐波生成。使用(N-MPDA)[PBBR4]单晶制造的光电传导装置表现出极好的光反应率(≈124aw-1在405 nm处),约4个幅度的幅度高于高度高于单次有机间隔的2D perovskites,较大的2D perovskites(例如,较大的特定率) (≈1012琼斯)。作为一种光学增益介质,(N-MPDA)[PBBR4]单晶表现出低阈值随机激光(≈6.5µJCM-2),具有角度依赖性窄线宽(≈0.1nm)和高质量因子(Q≈2673)。基于我们的结果,(N-MPDA)[PBBR4]单晶的出色光电优点将提供高性能设备,并充当动态材料,以构建稳定的未来电子产品和基于光电的应用程序。
钙钛矿量子点 (QD) 是溶液处理激光器所关注的焦点;然而,它们的俄歇寿命较短,限制了激光操作主要在飞秒时间范围内进行,在纳秒范围内实现光学增益阈值的光激发水平比在飞秒范围内高出两个数量级。本文作者报告了 QD 超晶格,其中增益介质促进激子离域以减少俄歇复合,并且结构的宏观尺寸提供激光所需的光学反馈。作者开发了一种自组装策略,该策略依赖于钠——一种钝化 QD 表面并诱导自组装以形成有序三维立方结构的组装导向器。考虑 QD 之间吸引力的密度泛函理论模型可以解释自组装和超晶格的形成。与传统的有机配体钝化量子点相比,钠具有更高的吸引力,最终导致微米级结构和反馈所需的光学刻面的形成。同时,新配体使点间距离减小,增强了量子点之间的激子离域,动态红移光致发光就是明证。这些结构充当激光腔和增益介质,实现阈值为 25 μ J cm –2 的纳秒级持续激光。