(1) D. Evans,“物联网:互联网的下一次发展将如何改变一切”,(白皮书),https://www。cisco.com / c / dam / global / ru_ua / assets / pdf / iot-ibsg-0411final。pdf(访问日期 2020-01-04)。(2) G.E.Moore,“将更多组件塞入集成电路”,Proc.IEEE,卷。86,号。1,页。82-85,1998 年 1 月,电子学,卷。38,号。8,页。114-117,1965 年 4 月。(3) A. Chien 和 V. Karamcheti,“摩尔定律:第一个结束和一个新的开始”,计算机,卷。46,页。48-53,2013 年 12 月。( 4 ) T. Hanyu、T. Endoh、Y. Ando、S. Ikeda、S. Fukami、H. Sato、H. Koike、Y. Ma、D. Suzuki 和 H. Ohno,“自旋转移力矩磁阻随机存取存储器 (STT-MRAM) 技术”,载于《非易失性存储器和存储技术的发展》,B. Magyari-Kope 和 Y. Nishi 编辑,页。237-281,第 7 章,Woodhead Publishing 电子和光学材料系列,第 2 版,2019 年。( 5 ) 羽生貴弘,“MTJ / MOSハイブリッド回路技术 ”,応用物理 ,vol.86,no.8,pp.662-665,2017 年 8 月。( 6 ) T. Hanyu、T. Endoh、D. Suzuki、H. Koike、Y. Ma、N. Onizawa、M. Natsui、S. Ikeda 和 H. Ohno,“使用基于 MTJ 的 VLSI 计算的待机无电源集成电路”,Proc.IEEE,vol.104,
Igor Aharonovich 是一位屡获殊荣的科学家,致力于研究能够生成、编码和分发量子信息的量子源的前沿研究。作为 UTS 数学和物理科学学院的教授,Igor 研究固体中的光学活性缺陷,旨在识别新一代超亮固态量子发射器。他对该领域的贡献包括发现金刚石和六方氮化硼中的新色心,以及开发利用这些材料设计纳米光子器件的新方法。他是 ARC 变革性超光学材料 (TMOS) 卓越中心的首席研究员,并领导一项国际合作,研究纳米材料六方氮化硼 (hBN) 中晶体缺陷或缺陷的化学结构。 2013 年,他在 UTS 成立了纳米光子学研究小组,2015 年晋升为副教授,2018 年晋升为正教授。他的研究小组探索宽带隙材料中的新量子发射器,旨在在单个芯片上制造量子纳米光子器件,用于下一代量子计算、密码学和生物传感。2016 年,Igor 和他的团队发现了第一个基于 hBN 缺陷的 2D 材料中的量子发射器,它们在室温下工作。他合著了 200 多篇同行评审的出版物,其中包括一篇被引用次数最多的关于金刚石光子学的评论。他还为固体纳米光子学撰写了路线图
材料科学 LTPC 2 0 2 3 总接触时数 - 60 先决条件 无 目的 本课程介绍了快速发展的材料科学领域的几个先进概念和主题。学生有望对该主题有所了解,并获得有关所需工程应用的材料选择和操作的科学理解。教学目标 1. 对先进材料、它们的功能和特性在技术应用方面获得基本的了解 2. 强调材料选择在设计过程中的重要性 3. 了解生物材料的主要类别及其在现代医学中的功能 4. 熟悉纳米科学和技术的新概念 5. 让学生掌握仪器、测量、数据采集、解释和分析的基础知识 单元 I — 电子和光子材料(6 小时) 电子材料:费米能量和费米-狄拉克分布函数-本征和非本征半导体中费米能级随温度的变化-霍尔效应-稀磁半导体(DMS)及其应用 超导材料:常温和高温超导-应用。 光子材料:LED — LCD - 光电导材料 - 光探测器 - 光子晶体及应用 - 非线性光学材料及其应用的基本思想。第二单元 — 磁性和电介质材料(6 小时)磁性材料:基于自旋的磁性材料分类 - 硬磁材料和软磁材料 - 铁氧体、石榴石和磁铅石 - 磁泡及其应用 - 磁性薄膜 - 自旋电子学和器件(巨磁阻、隧道磁阻和庞磁阻)。
理解对光的材料结构反应对于推进纳米级超快激光体积结构的加工分辨率至关重要。需要选择性热力学途径以最快的方式淬灭能量传输,并将过程限制在纳米长度上,绕过光学分辨率。在限制下量化材料动力学,可以原位访问瞬态局部温度和密度参数,因此成为理解过程的关键。我们使用时间分辨的定性和定量的光学相显微镜在整个物质α -Quartz中报告热力学状态的原位重建。助热动力学表明快速的空间限制的晶体至不汤过渡到热致密的熔融二氧化硅形式。致密化超过20%,在第一纳秒中,基质温度升至超过2,000 k。这种结构状态在数百纳秒中放松。光束到皮秒持续时间的分散和时间设计增加了空间限制,并触发了基于纳米挥手的极端纳米结构过程,该过程基于纳米挥手发生,在非变形材料中发生,在该材料中,低效率阶段降低了该过程的机械需求。在体积中获得了小于光波长的十分之一的处理特征量表。这允许在3D限制下进行结构和形态学的纳米级材料特征,可以设计光学材料。
简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
CHM 6620 — 固态无机化学 目标 1. 向学生介绍固态无机化学的高级概念; 2. 展示固态无机材料在当前和新兴应用中的使用方式。 先决条件:化学硕士或博士研究生或经讲师许可。 讲师 Stephen M. Kuebler 博士 电话:(407) 823-3720 办公室:化学楼 221 电子邮件:kuebler@mail.ucf.edu 文本 1. JE Huheey,《无机化学》,第 4 版。 2. Anthony R. West,《基础固态化学》,第 2 版。 3. 通过讲义和 WebCT 提供的精选阅读材料 讲座和讨论主题 ƒ 对称性、键合和结构(复习) ƒ 多态性、晶格能和缺陷 ƒ 离子固体 ƒ 氧化物和非氧化物晶体和玻璃 ƒ 制备方法(如区域精炼、化学气相沉积等) ƒ 微孔和层状固体、插层复合物、无机纤维 ƒ 链、环、笼和簇化合物 ƒ 纳米级固体(如量子点、纳米线、2D 量子阱) ƒ 线性和非线性光学材料 ƒ 无机聚合物(如有机硅、聚硅烷、聚磷腈) ƒ 催化中的无机固体 概述 在本课程中,我们将研究一系列无机固体的结构和化学性质及其一些技术应用。重点介绍它们的反应性和制备背后的化学原理。本课程对于对固态化学、催化、材料科学、环境化学感兴趣的学生很有帮助,或者总的来说,对于我们可以用元素周期表中的 100 多种元素做的所有令人兴奋的事情,这门课程都很有价值!
当今IT环境的典型数据处理,检索和转移[1]促使新一代研究人员寻求具有增强光子应用功能的创新材料。非线性光学(NLO)是这些短语所指的主题。当功能强大的电磁场与材料相互作用时,它会产生与原始场相同的相位,频率和振幅不同的新字段[2]。这种现象正在集中非线性光学元件。某些材料暴露在光线时会发生变化,并取决于方向,温度,光波长等因素。应用程序,例如数据处理,光子学,THZ生成,激光放大器等应用程序[3,4]现在很大程度上依赖于这些材料。研究人员正在逐步专注于寻找新型的NLO材料,以满足对此类物质的不断增长的需求。基于其组成的非线性光学材料有三种类型:有机,无机和半有机物[5]。无机材料具有良好的机械和热稳定性,但非线性值较低[6],而有机材料具有有效的非线性特性,但具有明显的机械和热不稳定性。化学工程方法可用于改变有机非线性材料的特征,以满足各种业务的不断发展的需求[7]。响应增强性能的需求,出现了新的材料,称为半有机NLO材料。除了出色的机械和热稳定性外,它们还包括显着的非线性。各向异性材料是晶体固体,表现出对其特征的定向依赖性。对于NLO行为,有必要在必须是非中心对称的空间群中结晶的非线性材料。
遗传编码的光遗传学执行器和荧光指标已成为脑活动相互作用的强大工具,因为它们能够控制和成像具有高细胞型特异性特异性和单细胞空间分辨率的神经元[1-3]。今天的光遗传学和功能性荧光想象的光学系统,例如多光子显微镜和可植入的光学材料,通常是由堆积的组件构建的,并且物理上大且复杂[4]。然而,硅(SI)集成光子学的进步导致纳米级波导和设备密集整合到达到毫米尺度的电路中,从而实现了综合功能[5,6]。因此,可以利用SI光子技术来创建微型神经生物学光学系统的纳米光子工具,并以批量操作性不可能的方式将光输送到脑组织中。一种方法是实现可植入的芯片尺度光子设备,这些设备在无法通过自由空间光学元件无法访问的深度(即超出光学衰减长度之外)的深度内传递和控制图案化的插图。沿着这些线路,纳米光量波导带有纤维耦合器(GC)光发射器[7-10]和微光发射二极管(µ LED)[11] [11]已集成到可植入的SI探针上。在脑组织中,由于光主要向前散射[12],因此可以在200-300 µm的距离内从GC中发出低差异束[7,8]。此外,正如Si光子束形成的最新进步所证明的[5,14,15],复杂的光栅和光子电路设计可以精确地与µ LED相对,基于纳米量波导的探针不会产生超过光本身引起的热量,可以更精确地量身定制光学发射功能,与晶圆尺度的铸造制造[9,13]兼容[9,13],并且可以达到高光源。
抽象的时间域调查(例如ZTF,ASAS-SN和Panstarrs)发现了无数现象,例如在日常时间表上不断发展的超新星。这些系统通过观察单个瓷砖并定期重新访问先前观察到的区域,每晚每周至每周一次的全天空节奏,但它们可能会错过以更快的速度演变或出现在其视野外(FOV)以外的瞬态。达到这些快速,罕见的瞬态需要同时调查整个天空。evryscope遵循这种方法,每两分钟,一对北部和南部的望远镜每两分钟都在地平线上方调查天空。移至下一代的调查,Argus阵列是一个全天空系统,可将900个望远镜多路复用到单个安装座上。使用ArcSecond尺度采样,SCMOS探测器和宽场光学元件,Argus可以达到外层状瞬变。然而,随着分辨率接近观看限制的性能,Argus的物理数量级比Evryscope大。这需要一个自定义的安装座,能够支持和跟踪900望远镜,同时保持光学材料的挑战等同于为目前操作的机器人望远镜组合提供服务。我提出了针对这些挑战的解决方案,该挑战是在Argus Pathfinder阵列中实施的,这是我论文工作的中心主题。这个缩放的原型演示了如何构造和维护Argus数组。我详细介绍了我们的新假尾望远镜设计,在操作数百个单独的望远镜进行初始调试时,减少了维护开销。我们以Argus Pathfinder的早期绩效结果得出结论。i还提出可扩展的运动控制系统,驱动Argus阵列的当前设计。
2019年,罗伯特·阿尔法诺(Robert Alfano)获得了SPIE(光学仪器工程师协会)金牌奖,这是该协会授予的最高荣誉。罗伯特·阿尔法诺(Robert Alfano)是一位意大利裔美国人实验物理学家。他是纽约市城市学院和纽约大学研究生院的杰出科学与工程学教授,他还是Ultrafast Spectroscoscopy and Lasers研究所的创始主任(1982)。他是生物医学成像和光谱,超快激光器和光学元件,可调激光器,半导体材料和设备,光学材料,生物物理学,非线性光学和光子学的先驱;他还从事纳米技术和连贯的反向散射工作。他发现白光超脑激光器是光学相干断层扫描的根源,它正在打破眼科,心脏病学和口腔癌检测的障碍(请参阅“与多键OCT的更好分辨率,第28页”),以及其他应用。他发起了现在被称为光学活检的领域。他最近计算得的,他在职业生涯中为CUNY带来了价值6200万美元的资金,平均每年170万美元。他说,他已经通过“撞到人行道”来实现这一壮举。他养成了积极接触资金并使他们对他的工作感兴趣的习惯。alfano除了诸如光学通信,固态物理学和计量学之类的领域外,还发现了进一步生物医学光学的发现。Alfano在生物医学仪器开发方面取得了出色的记录。在700多种研究文章,102份专利,几本编辑的卷和会议记录中,他对光子学的贡献记录在案中,并引用了10,000多个引用。他拥有45份专利,仅在生物医学光学区域发表了230多种文章。他发现白光超脑激光器是光学连贯性层析成像的根源,它正在打破眼科,心脏病学和