抽象的光学非线性在几种类型的光学信息处理协议中至关重要。但是,使用常规光学材料实现相非线性所需的高激光强度代表了几个光子体制中非线性光学的挑战。我们引入了一种红外腔量子电动力学(QED)方法,用于在反射设置中对单个THZ脉冲的非线性相移,以输入功率为条件。功率依赖性相位在0的顺序上移动。1π只能使用仅几个µW输入功率的飞秒脉冲来实现。所提出的方案涉及少量的子带量子量井过渡偶极子,始终耦合到红外谐振器的近场。由于通过有效的偶极chiring机制从材料偶极向红外真空的频谱非谐度转移,该场演化是非线性的,该机制会瞬时从真空场中瞬时破坏量子孔的过渡,从而导致光子阻滞。我们开发了分析理论,该理论描述了印记非线性相位转移对相关物理参数的依赖性。对于一对量子井偶极子,相对于偶极转变频率和松弛速率的不均匀性,相位控制方案显示出可靠的。基于lindblad量子主方程的数值结果验证了材料偶极子填充到第二激励歧管的制度中的理论。与需要强烈的光 - 物质相互作用的常规QED方案相反,所提出的相位非线性在弱耦合方面最有效,从而增加了使用当前的纳米光电技术实现实验实现的前景。
研究结构缺陷及其对光学材料光学性质的影响是至关重要的,因为在制备用于显示应用的材料时会涉及不同的方法。镧系离子掺杂是一种简单的结构探测策略,它有助于识别结构缺陷。使用 Pechini (C 2 SP) 和水热法 (C 2 SH) 制备纯和铽 (Tb 3 +) 掺杂的 Ca 2 SiO 4 (C 2 S) 粒子。从 SEM 图像中可以看出,Tb 3 + 掺杂的 C 2 SP 粒子比 C 2 SH 粒子更高度聚集。TEM 研究证实,在 180 和 200 C 的高水热温度下制备的 C 2 SH (C 2 S:180H 和 C 2 S:200H) 的粒度减小。 Tb 3 + 掺杂的 C 2 S:180H 和 C 2 S:200H 发生荧光发射猝灭。与 Tb 3 + 掺杂的 C 2 SP、C 2 S:180H 和 C 2 S:200H 相比,在 140 C 下制备的 Tb 3 + 掺杂的 C 2 SH 的发射强度较高。在 X 射线光电子能谱 (XPS) 价带谱中,实验评估了与纯 C 2 SP 和 C 2 S:180H 四面体硅酸盐的上能级价带谱相关的 O2p 轨道的变化。由于硅酸盐单元的扭曲导致对称性降低,从而猝灭了发射,这已由 XPS 价带谱和 Tb 3 + 发射线证实。这项研究表明,与水热法相比,Pechini 法更适合制备 Tb 3 + 掺杂的 C 2 S 荧光粉,特别是在高温下用于固态显示器和闪烁体应用。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
属性,对给定频率征集的响应与系统的内在特性密切相关,看来最强的响应与结构的共振有关,即没有来源的波动方程的解决方案,在自由空间中不再与特定问题有关。看来,这些解决方案是相应特定操作员的本征码,这些本征码的集合是一个非常适合开发具有给定源的其他解决方案的非常适合的基础。因此,确定这些本征码对于物理理解和实际计算都非常有用。还可以预期,这些模式的小子集可以包含足够的信息来解决一些问题,并构成了有效的降低模型。一个引人入胜且流行的共鸣的例子是塔科马窄桥的崩溃,但由于现象更加复杂,这是造成的[10]。最近的案件是盖茨黑德千禧桥在行人在开幕日经历了令人震惊的摇摆动作和伏尔加格勒的伏尔加桥[15]。新方法旨在防止这些灾难性的振动损害由于共振而发生。相反,共振可用于设计和研究新型的超材料和光子/语音晶体[46]。模式的另一个例子是波导中的传播模式,例如光纤。在2000年代初期,显微结构化的光纤出现了。传播常数)。最初的想法是使用光子晶体纤维的带隙,但很快就显然是在覆层中有限的周期性孔足以获得良好的指导性能[59]。一个基本模型是考虑在较高的折射率中考虑低折射率孔,足够大,可以被视为无限制。在这种情况下,没有真正的繁殖模式,而是与复杂特征值相关的泄漏模式(即这些模式确实遭受了损失,但足够小以保持出色的指导性能。更普遍地,光子学中使用的材料由复杂的介电渗透性表示,其中虚部对应于损失。光频率下的所有经典光学材料都是分散的,即频率依赖性,因此是根据因果关系原理引起的Kramers-Kronig关系[45]的耗散性的。
Harald Giessen(*1966)毕业于Kaiserslautern大学,并获得了物理文凭,并获得了他的硕士学位。 和Ph.D. 1995年亚利桑那大学的光学科学专业为J.W. 富布赖特学者。 在斯图加特(Stuttgart)的马克斯·普朗克(Max Planck)固态研究研究所的博士后之后,他搬到了马尔堡(Marburg)担任助理教授。 从2001年至2004年,他担任波恩大学的副教授。 自2005年以来,他是全部教授,并担任斯图加特大学物理系Ultrafast Nanooptics的主席。 他还是Scope Photonics Engineering Stuttgart中心的联合主席。 他是剑桥大学的客座研究员,因斯布鲁克大学和悉尼大学的客座教授,新加坡的A*Star,以及北京技术大学。 他是新加坡南洋技术大学破坏性光子技术中心的相关研究员。 他在2012年获得了ERC Advanced Grant,因为他在复杂的纳米植物方面的工作。 他是戈登等球形和纳米光子学会议的联合主席(2014年)和主席(2016年)。 他是Photonics Europe会议的总主席(Strasbourg 2018),并且是奥地利Seefeld的双年度会议纳米达的联合主席。 他在期刊顾问委员会“高级光学材料”,“纳米光学:期刊”,“ ACS Photonics”,“ ACS传感器”和“ Advanced Photonics”。 他是超快Nanooptics,Plasmonics和Ultrafast激光器的主题编辑,以及《自然出版集团的“ Light:Science&Applications”杂志的脉冲生成。Harald Giessen(*1966)毕业于Kaiserslautern大学,并获得了物理文凭,并获得了他的硕士学位。和Ph.D. 1995年亚利桑那大学的光学科学专业为J.W.富布赖特学者。在斯图加特(Stuttgart)的马克斯·普朗克(Max Planck)固态研究研究所的博士后之后,他搬到了马尔堡(Marburg)担任助理教授。从2001年至2004年,他担任波恩大学的副教授。自2005年以来,他是全部教授,并担任斯图加特大学物理系Ultrafast Nanooptics的主席。他还是Scope Photonics Engineering Stuttgart中心的联合主席。他是剑桥大学的客座研究员,因斯布鲁克大学和悉尼大学的客座教授,新加坡的A*Star,以及北京技术大学。他是新加坡南洋技术大学破坏性光子技术中心的相关研究员。他在2012年获得了ERC Advanced Grant,因为他在复杂的纳米植物方面的工作。他是戈登等球形和纳米光子学会议的联合主席(2014年)和主席(2016年)。他是Photonics Europe会议的总主席(Strasbourg 2018),并且是奥地利Seefeld的双年度会议纳米达的联合主席。他在期刊顾问委员会“高级光学材料”,“纳米光学:期刊”,“ ACS Photonics”,“ ACS传感器”和“ Advanced Photonics”。他是超快Nanooptics,Plasmonics和Ultrafast激光器的主题编辑,以及《自然出版集团的“ Light:Science&Applications”杂志的脉冲生成。他是美国光学学会的会员。在2018年,2019年,2020年和2021年,他被科学信息研究所评为“高度引用的研究人员”(最高1%)。在2021年,他当选为荣誉学会西格玛十一的正式成员。在2021年,他与Simon Thiele和Alois Herkommer一起获得了Gips-Schüle研究奖,以开创3D印刷微型触发技术的开创性工作。他被授予德国体育3D印刷微型触发的2024年罗伯特·威查德·托尔奖。他的研究兴趣包括超快纳米透明质学,血浆,超材料,3D打印的微观和纳米光学,医学微观 - 光学,微型内窥镜,新型MID-IR超级超快激光源,显微镜,生物学,生物学和感应中的应用。他根据他的研究启用了三家公司:NT&C(单粒子光谱显微镜),Stuttgart Instruments GmbH(Ultrabroadbandable可调FS和PS激光源从可见到MID-IR)和PRINTOPTIX GMBH(3D印刷的Microptics)。Stuttgart Instruments GmbH在Photonics West上获得了2022年Prism奖,并在Photonics的Laser World of Photonics World获得了2022年激光创新奖。在2023年,斯图加特仪器在莱宾格奖竞赛中获得了决赛奖。printoptix gmbh赢得了2023年的斯图加特创新奖。
用于消费者应用的聚合物的生产,消费和处置为环境带来了几个问题,包括碳排放以及生态系统中微观和纳米级碎片的持久性。近年来,生物销售者(例如聚丁烯磷酸二苯二甲酸酯)由于其可生物降解性和可量身定制的机械性能而成为石油衍生聚合物的环保替代品。其他生物聚合物替代品,例如多糖(例如壳聚糖和纤维素醚)在胆固醇液体晶体中具有自然丰富和自组装,并带有量身定制的光子带隙,为开发功能光学材料开发了新的机会。但是,由于其大规模合成和制造业的挑战,这些生物聚合物替代品的广泛采用仍然有限。在本演讲中,我们将通过快速和露天反应方案及其在刺激反应性材料的开发中进行讨论这些聚合物的处理。我们将讨论化学因子(例如分子量和重复单位化学)如何影响基于溶液和热制造方案的链迁移率。我们还将讨论如何利用链相互作用来产生远距离顺序,例如液晶自组装,从而实现新的晚期光学功能。这些关系有望帮助大规模部署具有量身定制的结构和特性的基于生物聚合物的功能材料。来自法国矿业的材料科学与工程学。短传记CécileA。C. Chazot(她/她/她)是西北大学的朱莉娅·韦特曼材料科学与工程助理教授,在那里她领导了可持续的聚合物创新实验室(SPIN LAB)。她的研究旨在开发可持续的聚合物材料,同等地关注环境和社会影响。她的重点领域包括基于纤维的材料,生物聚合物,大规模加工,结构色和工程教育。她获得了博士学位。 2022年,在马萨诸塞州理工学院(MIT)的材料科学与工程系(DMSE)的监督下她还是《综合研究机会材料计划》(Micro)的联合创始人,这是一项远程教育计划,旨在授权少数化本科生在材料科学领域进行研究。Cecile的工作在于材料和制造业的教育计划和创新的界面,这使她在2021年材料研究协会(MRS)秋季会议上获得了Arthur Nowick奖和银研究生奖。
MM-102:工程材料概论工程材料简介、其范围和在工业发展中的作用、工程材料的原材料:其可用性和需求、工程材料基础:原子键、金属晶体结构、聚合物、陶瓷、复合材料和半导体材料简介。金属、聚合物、陶瓷、复合材料和半导体材料的加工、特性和应用。新型工程材料简介,例如形状记忆材料、智能材料、电气、磁性和光学材料。航空航天和运输工业的材料。实验室活动 ME-101:工程力学粒子静力学:平面上的力;牛顿第一定律,自由体图;空间中的力(矩形分量);空间中粒子的平衡。粒子运动学:粒子的直线和曲线运动;速度和加速度的分量;相对于平动框架的运动。粒子动力学:牛顿第二定律;动态平衡;直线和曲线运动;功和能量;粒子的动能;功和能量原理;能量守恒定律;冲量和动量;冲量和动量守恒定律;直接和斜向冲击;角动量守恒定律。刚体:力的等效系统;传递性原理;力的矩;偶;瓦里尼翁定理。三维物体的重心和体积的质心。转动惯量、回转半径、平行轴定理。刚体平衡:自由体图;二维和三维平衡;支撑和连接的反应;二力和三力物体的平衡。刚体运动学:一般平面运动;绝对和相对速度和加速度。刚体的平面运动:力和加速度;能量和动量;线动量和角动量守恒定律。摩擦:干摩擦定律;摩擦角;楔子;方螺纹螺钉;径向和推力轴承;皮带摩擦。结构分析:内力与牛顿第三定律;简单和空间桁架;接头和截面;框架和机器。电缆中的力。PH-122:应用物理学简介:科学符号和有效数字。实验测量中的误差类型。不同系统中的单位。图形技术(对数、半对数和其他非线性图形)矢量:矢量回顾、矢量导数。线和表面积分。标量的梯度。力学:力学的极限。坐标系。恒定加速度下的运动、牛顿定律及其应用。伽利略不变性。匀速圆周运动。摩擦力。
0149-1423 AAPG 公报(印刷版) A1 1069-6563 学术急诊医学 A1 1040-2446 学术医学 A1 0001-4575 事故分析与预防 A1 0951-3574 会计、审计与责任杂志 A1 0001-4842 化学研究报告 A1 0360-0300 ACM 计算调查 A1 0734-2071 ACM 计算机系统学报 A1 1946-6226 ACM 计算机教育学报 A1 0730-0301 ACM 图形学报 A1 1046-8188 ACM信息系统学报 A1 1556-4681 ACM 数据知识发现学报 A1 1944-8252 ACS 应用材料与界面 (在线) A1 2155-5435 ACS 催化 A1 2374-7951 ACS 中央科学 (在线) A1 1554-8929 ACS 化学生物学 A1 1554-8937 ACS 化学生物学 A1 1948-7193 ACS 化学神经科学 A1 2373-8227 ACS 传染病 A1 2161-1653 ACS 宏字母 A1 1936-0851 ACS 纳米 A1 2379-3694 ACS 传感器 A1 2168-0485 ACS 可持续化学与工程 A1 2161-5063 ACS 合成生物学 A1 0094-5765 ACTA ASTRONAUTICA A1 0001-5237 ACTA ASTRONOMICA A1 1742-7061 ACTA BIOMATERIALIA A1 2052-5206 ACTA CRYSTALLOGRAPHICA SECTION B A1 1359-6454 ACTA MATERIALIA (OXFORD) A1 0001-5962 ACTA MATHEMATICA A1 0001-6322 ACTA NEUROPATHOLOGICA A1 2051-5960 ACTA NEUROPATHOLOGICA COMMUNICATIONS A1 1745-3674 骨科学报(印刷版) A1 2211-3835 药学报 B A1 1748-1716 生理学报(在线) A1 0186-6028 社会学报 A1 0001-706X 热带学报 A1 0335-5322 社会科学研究行动 A1 2270-4957 符号学行动(EN LIGNE) A1 0965-2140 成瘾(ABINGDON。打印) A1 1355-6215 成瘾生物学 (打印) A1 1940-0640 成瘾科学与临床实践 A1 0306-4603 成瘾行为 A1 0894-587X 精神健康管理与政策 A1 0001-8392 管理科学季刊 A1 1474-0346 先进工程信息学 A1 1438-1656 先进工程材料 (打印) A1 1616-301X 先进功能材料 (打印) A1 2192-2659 先进医疗材料 A1 1521-4095 高级材料 (在线) A1 0935-9648 先进材料 (WEINHEIM PRINT) A1 2195-1071 先进光学材料 A1
B为VI族元素,例如Bi 2 Se 3 、Bi 2 Te 3 、Sb 2 Te 3 和In 2 Se 3 ,由于其独特的电子性质而受到越来越多的关注。 [2] 例如,半导体In 2 Se 3 表现出厚度相关的带隙(从块状晶体的1.3 eV到单层的2.8 eV)。 [3] 与无间隙石墨烯和过渡金属二硫属化合物相比,In 2 Se 3 的电子性质显示出明显的优势,后两者仅在单层中表现出相对较大的带隙(1.5–2.5 eV)。 [4] 当用作光学材料时,In 2 Se 3 表现出高吸收系数、宽范围响应度(从紫外线(325 nm)到短波长红外(1800 nm))和高灵敏度。 [5] 与其他对空气敏感的直接带隙二维材料(如黑磷(BP)[1c])不同,完整的 In 2 Se 3 薄片在空气中非常稳定。最近,基于单个 In 2 Se 3 纳米片的光电探测器具有高光敏性(10 5 AW − 1 )和快速、可逆和稳定的光响应特性。[5] In 2 Se 3 的优异性能优于许多其他二维材料(如石墨烯、BP 和 MoS 2 ),为大面积光电探测器提供了重要的基础。[6] 尽管如此,具有大晶畴的无缺陷 In 2 Se 3 薄片的可扩展生产仍然是其实际应用的障碍。微机械剥离是生产高质量薄 In 2 Se 3 纳米片的最著名方法。[5,7] 然而,它的剥离产率极低,仅适用于基础研究。 [8] 克服这一限制的潜在方案包括化学气相沉积、[2c] 液相剥离 [9] 和湿化学合成。[10] 然而,这些方法制备的 In 2 Se 3 薄片通常具有大量缺陷和较差的光电性能。[9,11] 例如,通过气相沉积获得的 In 2 Se 3 纳米片的光响应度(3.95 × 10 2 AW − 1)明显低于透明胶带剥离薄片(10 5 AW − 1)。[8] 从基本角度来看,In 2 Se 3 是一种由弱范德华力连接的层状材料,层间距离为 0.98 nm,比许多其他层状化合物(0.3–0.7 nm;图 1 a、b;图 S1,支持信息)大得多。因此,插入客体分子或离子,特别是在溶液中电流的驱动下,可以成为将二维晶体分层成单个薄片的合理策略。[12]
1。电子和离子显微镜和微分析:原理和术语,Lawrence E. Murr 2。声音信号处理:理论和实施,由Norman J. Berg和John N. Lee 3。电孔和声学扫描和偏转,米尔顿·戈特利布,克莱夫·L·爱尔兰和约翰·马丁·莱伊4。单态光纤:原理和应用,Luc B. Jeun – Homme 5。光纤数据通信的脉冲代码格式:基本原理和应用,David J. Morris 6。光学材料:选择和应用简介,Sol-Omon Musikant 7。气态测量的红外方法:理论与实践,由Joda Wormhoudt编辑8。激光束扫描:光学 - 机械设备,系统和数据存储光学器件,由Gerald F. Marshall编辑9.光学 - 机械系统设计,Paul R. Yoder,Jr。10。光纤拼接和连接器:理论与方法,加尔文·M·米勒(Calvin M. Miller白色11。激光光谱及其应用,由Leon J. Rad – Ziemski,Richard W. Solan和Jeffrey A. Paisner编辑,12。红外光电学:设备和应用,William Nunley和J. Scott Bechtel 13。集成的光电电路和组件:设计和应用,由Lynn D. Hutcheson编辑14。分子激光器手册,由彼得·K·C·乔(Peter K. Cheo)编辑15。光纤和电缆的手册,Hiroshi Murata 16。Acousto – Optics,Adrian Korpel 17。应用光学的程序,John Strong 18。固体激光器手册,由Peter K. Cheo 19.光学计算:数字和象征性,由Raymond Arra -Thoon20。D. K. Evans 21。激光诱导的等离子体和应用,由Leon J. Rad – Ziemski和David A. Cremers编辑22。红外技术基础知识,Irving J. Spiro和Monroe Schlessinger 23。单码光纤光学器件:第二版原理和应用程序,修订和扩展,Luc B. Jeunhomme 24。图像分析应用,由Rangachar Kasturi和Mohan M. Trivedi编辑25。光电导率:艺术,科学和技术,N。V。Joshi 26。光电工程的原理,马克·A·梅特泽(Mark A. Mentzer)27。镜头设计,米尔顿·莱金(Milton Laikin)28。光学组件,系统和测量技术,Rajpal S. Sirohi和M. P. Kothiyal 29。电子和离子显微镜和微分析:原理和副本,第二版,修订和扩展,劳伦斯E. Murr
摘要 :在线性介质中,折射率和吸收系数与光的强度无关,光的频率在介质中不会改变,频率仅取决于光源,重叠原理适用,光和光不能被控制(不会发生光子-光子相互作用)。在非线性环境中;折射率取决于光的强度,频率变化,重叠原理不适用,光可以通过光控制。非线性光学有许多应用,这些应用每天都变得越来越普遍。其中一些应用是光开关,全息图,激光物理,光通信。这些差异可以通过激光脉冲的形状及其与理论形式的偏差来解释,这通常很难确定。影响材料非线性参数测量精度的另一个因素是激光功率测量的不确定性和聚焦光束的腰部尺寸,与高斯分布的偏差,所研究材料的不均匀性等。线性是介质的属性,而不是光的属性。在没有非线性光学物质(空的空间)的情况下,无法观察到它。通过改变介质的性质,光会导致穿过该介质的光的性质发生变化,甚至是其自身的性质。高功率光源在穿过其所经过的材料时可能具有不同的能量(频率)值。如果施加的外部电场(E)的值足够大(使用高能强度光),则偏振矢量也将包括非线性效应。CS 2 被对非线性光学感兴趣的科学家接受为非线性测量的标准测试材料。CS 2 的一些应用是熏蒸、杀虫剂、溶剂、制造、健康影响。关键词:光学、激光、非线性光学、测量技术、Z 扫描、机械工程。简介纳米技术的改进和具有特定性质的新纳米材料的创造导致越来越需要研究新创造材料的光学特性的非线性。光学材料(包括有机材料)的非线性折射和非线性吸收对于使用强大激光源的系统中光学元件的运行至关重要。激光技术的发展和改进要求提高材料光学非线性研究过程的准确性和自动化程度。在实践中,有一些方法用于研究一种或另一种非线性效应。这些方法之一 Z 扫描方法特别适合同时研究与材料介电导率相关的两种非线性效应:非线性吸收和非线性折射。目前已使用两种改进方法:用于研究光学非线性吸收的开孔径 Z 扫描方法和用于研究材料非线性折射的闭孔径 Z 扫描方法。有机非线性光学领域为基础研究和技术应用提供了许多令人兴奋的机会。与微电子和基因工程等其他高科技领域一样,科学和技术可以预期会共享重要的相互作用,其中一个方面的进步可以促进另一个方面的进步