失明构成了日益增长的全球挑战,约有26%的病例归因于退化性视网膜疾病。虽然基因疗法,光遗传学工具,光敏开关和视网膜假体为视力恢复提供了希望,但这些高成本疗法将使很少的患者受益。因此,了解视网膜疾病是提高有效治疗的关键,需要在体外模型复制病理学并允许定量评估药物发现。多能干细胞(PSC)提供了独特的解决方案,因为它们的无限供应和分化为包含所有细胞类型的光响应性视网膜组织的能力。本综述着重于PSC的光感受器和视网膜色素上皮(RPE)细胞的历史和当前状态。我们探讨了这项技术在疾病建模,实验疗法测试,生物标志物鉴定和毒性研究中的应用。我们考虑可伸缩性,标准化和可重复性的挑战,并强调将脉管系统和免疫细胞纳入视网膜器官的重要性。我们主张在数据采集和分析中进行高通量自动化,并强调了高级微型生理系统的价值,这些系统充分捕获了神经视网膜,RPE和绒毛膜毛细血管之间的相互作用。
X连接的色素性视网膜炎(XLRP)是一种罕见的遗传性视网膜疾病,表现为夜视受损和外围视力丧失,发展为法律失明。XLRP最常见的原因之一是色素性鸟氨酸三磷酸酶调节剂(RPGR)基因中的致病变异。不幸的是,目前尚无RPGR -XLRP的治疗方法。frontera开发了FT-002,这是一种基于AAV2/5的向量,在GRK1启动子的控制下携带密码子优化的HRPGR ORF15基因,以挽救光感受器细胞的功能和结构丧失,并通过下视网膜给药改善视觉功能。向量设计如图1。在这里,我们评估了CHO-K1细胞中FT-002和聚谷氨酰化的HRPGR-ORF15蛋白的体外转导效率,在5.80×10 7,1.83×10 80和5.80×10 8和5.80×10 8 VG/EYSE中,下输送FT-002下输送FT-002的效率和生物分布的效率和生物分布。在一项符合GLP的13周研究中,FT-002在Cynomolgus猴子中。临床前结果表明,FT-002是一种有望治疗与RPGR相关的XLRP患者的有前途的AAV基因疗法,目前正在中国进入PH I/II临床研究。
遗传性视网膜营养不良(IRD)的特征是进行性光感受器变性和视力丧失。Usher综合征(USH)是一种综合征IRD,其特征是色素性视网膜炎(RP)和听力损失。USH在临床和基因上是异质的,最普遍的病因基因是USH2A。USH2A突变还解释了大量孤立的常染色体隐性RP(ARRP)病例。这种高预期是由于两个经常性的USH2A突变引起的,C.2276G> T和C.2299delg。由于USH2A cDNA的大尺寸,基因增强疗法是无法访问的。但是,CRISPR/CAS9介导的基因组编辑是可行的替代方法。我们使用了增强的链球菌链球菌(ESPCAS9)的特异性CAS9来成功实现诱导多能干细胞(IPSC)患者的两个最普遍的USH2A突变的无缝校正。我们的结果强调了促进ESPCAS9的高目标效率和特种型的功能。一致地,我们没有在校正后的IPSC中识别出任何非靶诱变,这些诱变也保留了多能性和遗传稳定性。此外,对USH2A表达的分析出乎意料地识别了与C.2276G> T和C.229999delg突变相关的异常mRNA水平,这些突变在校正后恢复。综上所述,我们有效的CRISPR/CAS9介导的USH2A突变校正策略为USH和ARRP患者提供了潜在治疗的希望。
双重变异在芳基烃受体相互作用的蛋白质样1(AIPL1)基因导致leber先天性膜性肌动症亚型4(LCA4),一种常染色体隐性膜性早期性早期性衰弱性疾病,导致近距离寿命的快速发光症状,并在近代的野生型中产生了近代的寿命。Currently, there is no treat- ment or cure for AIPL1 -associated LCA4.在这项研究中,我们研究了腺相关病毒介导的AIPL1基因替代疗法的潜力,该疗法在LCA4的两个先前验证的人视网膜器官(RO)模型中。我们在这里报告说,光感受器特异性AIPL1基因置换疗法目前正在以人类的第一个应用中进行测试,在这些模型中有效地挽救了AIPL1-ASSOCI-ENDED LCA4的分子特征。值得注意的是,挽救视网膜磷酸酯酶6的损失,并在治疗后降低了环状鸟嘌呤一磷酸(CGMP)水平升高。对未处理和AAV传输的ROS的转录组分析揭示了对CGMP水平升高和病毒感染的响应的转录组变化。Overall, this study supports AIPL1 gene therapy as a promising ther- apeutic intervention for LCA4.
摘要。- 目的:这项研究的目的是鉴定枢纽基因并揭示糖尿病性视网膜病(DR)的骨质机制。材料和方法:我们在我们的研究中使用了基因表达综合(GEO)DATASET GSE60436。在筛选差异表达的基因(DEG)后,我们形成了基因和基因组(KEGG)功能分析的基因本体学(GO)和京都百科。随后,使用搜索工具来检索相互作用的基因(String)数据库并使用Cytoscape软件进行访问,并使用搜索工具进行了搜索工具来构建蛋白 - 蛋白质相互作用(PPI)网络。最后,我们通过CytoHubba插件确定了10个集线器基因。结果:总共确定了592摄氏度,包括203个上调的基因和389个下调基因。DEG主要富含视觉感知,光感受器外部段膜,视网膜结合和PI3K-AKT信号通路。通过构建蛋白质 - 蛋白质间的作用(PPI)网络,最终确定了10个中心基因,包括CNGA1,PDE6G,RHO,ABCA4,PDE6A,PDE6B,PDE6B,NRL,RPE65,RPE65,GUCA1B和AIPL1。结论:CNGA1,PDE6G,RHO,ABCA4,PDE6A,PDE6B,NRL,RPE65,GUCA1B和AIPL1可能是潜在的生物标志物,而治疗性TAR-可用于DR。
图 1. 生物启发式 2D 视觉系统。生物视觉神经网络的基本组成部分,a) 眼睛可实现生物视觉,b) 大脑中的视觉皮层可实现生物学习。c) 眼睛中的光感受器可实现光传导和适应。视杆细胞可实现暗视,而视锥细胞可实现明视。d) 突触增强或减弱以进行学习或遗忘,例如,当突触前神经元释放谷氨酸神经递质时,通过控制突触后神经元中的 AMPA 受体数量来实现学习或遗忘。e) 示意图和 f) 人工视觉系统的假彩色显微镜图像,该系统由集成有可编程背栅堆栈的 9×1 2D 光电晶体管阵列组成。该平台可实现光传导、视觉适应、突触可塑性、直接学习、无监督再学习以及利用遗忘在动态噪声下学习等功能。 g) 传输特性,即在黑暗环境中不同漏极偏压(𝑉𝑉 𝐷𝐷𝐷𝐷 )下源极至漏极电流(𝐼𝐼 𝐷𝐷𝐷 )随背栅极电压(𝑉𝑉 𝐵𝐵𝐵 )变化的特性,h) 在蓝色发光二极管(LED)不同照明水平下的光转导,i) 光增强引起的学习或设备电导(𝐺𝐺 )的增加,以及 j) 在代表性 2D 光电晶体管中,在 𝑉𝑉 𝐵𝐵𝐵𝐵 = 0 V 时测得的电抑制引起的遗忘或 𝐺𝐺 的减少。
对光高度敏感,因此我们可以在低照度下看东西。 它无法分辨精细的细节,并且容易受到光饱和的影响。 这就是我们从黑暗的房间走到阳光下时会暂时失明的原因:视杆细胞一直处于活跃状态,并被突然的光线饱和。 视锥细胞 视锥细胞是眼睛的第二种受体。 它们对光的敏感度不如视杆细胞,因此可以忍受更多的光线。 视锥细胞有三种,每种对不同波长的光敏感。 这使我们能够看到彩色图像。眼睛有大约 600 万个视锥细胞,主要集中在视网膜中央凹。 中央凹是视网膜的一小部分,图像可在此固定。 盲点 盲点也位于视网膜上。 尽管视网膜主要被光感受器覆盖,但在视神经进入眼睛的地方有一个盲点。 盲点没有视杆细胞或视锥细胞,但我们的视觉系统会对此进行补偿,所以在正常情况下我们无法意识到它。 神经细胞 视网膜还有专门的神经细胞,称为神经节细胞。 有两种类型: X 细胞:这些细胞集中在中央凹,负责早期检测模式。 Y 细胞:这些细胞在视网膜中分布更广泛,负责早期检测运动。 视觉感知 了解眼睛的基本构造有助于解释视觉的物理机制,但视觉感知不止于此。 视觉器官接收到的信息必须经过过滤并传递给处理元素,以便我们识别连贯的场景,消除相对距离歧义并区分颜色。 让我们看看我们如何感知大小和深度、亮度和颜色,它们对于有效的视觉界面的设计都至关重要。
缩写:AAV:腺相关病毒;ABCA1:ATP 结合盒转运蛋白 A1;ACE2:血管紧张素转换酶 2;ANXA1:膜联蛋白 A1;Bcl-2:B 细胞白血病/淋巴瘤 2;Bcl-xL:超大 B 细胞淋巴瘤;BDNF:脑源性神经营养因子;Brn3b:脑特异性同源框/POU 结构域蛋白 3b;C3:C3 胞外酶转移酶;CNV:脉络膜新生血管;CS:皮质类固醇;EAU:实验性自身免疫性葡萄膜炎;ECM:细胞外基质;EIU:内毒素诱导的葡萄膜炎;HLA:人类白细胞抗原;hSyn:人类突触蛋白 1 启动子;IL-1 β:白细胞介素 1 β;IOP:眼压; IRBP:光感受器间类视黄酸结合蛋白;MAC:膜攻击复合物;MAX:MYC 相关蛋白 X;MCP-1:单核细胞趋化蛋白-1;MMP:基质金属蛋白酶;Nabs:中和抗体;NF- κ B:核因子 κ B;NHP:非人类灵长类动物;NIU:非传染性葡萄膜炎;Nrf2:核因子红细胞2相关因子2;Pgk:磷酸甘油激酶;RGC:视网膜神经节细胞;RPE:视网膜色素上皮;scAAV:自互补 AAV;sCD59:可溶性 CD59;SOD2:超氧化物歧化酶 2;Tg-MYOC Y437H:具有肌动蛋白 Y437H 突变的转基因小鼠;TLR:Toll 样受体;TM:小梁网; TrkB:原肌球蛋白相关受体激酶-B;VEGF:血管内皮生长因子
与哺乳动物相比,斑马鱼可以再生其受损的感光体。这种能力取决于MüllerGlia(Mg)的内在可塑性。在这里,我们确定了转基因记者Careg是重生和心脏的标志,也参与了斑马鱼的视网膜恢复。甲基硝基库(MNU)处理后,视网膜变质并包含受损的细胞类型,包括杆,紫外线敏感锥和外丛状层。该表型与Mg子集中的Careg表达诱导有关,直到光感受器突触层的重建为止。单细胞RNA测序(SCRNASEQ)对再生视网膜的分析表明,未成熟的棒群,通过高淡有关蛋白的高表达和纤毛生成基因MEIG1的定义,但光转导基因的表达较低。此外,锥体对视网膜损伤的反应显示了对代谢和视觉感知基因的放松管制。CAREG:EGFP表达和非表达MG之间的比较表明,这两个亚群的特征是不同的分子特征,表明它们对再生程序的异源反应性。核糖体蛋白S6磷酸化的动力学表明,TOR信号逐渐从MG转换为祖细胞。用雷帕霉素抑制TOR可以降低细胞周期活性,但既不影响CAREG:MG中的EGFP表达,也没有阻止恢复视网膜结构。这表明MG重编程和祖细胞增殖可能受不同的机制调节。总而言之,Careg Reporter检测到活化的MG,并在包括视网膜在内的各种斑马器官中提供了竞争能力的细胞的共同标记。
摘要:视网膜色素变性 GTPase 调节剂 (RPGR) 基因内的变异是 X 连锁视网膜色素变性 (XLRP) 的主要原因,XLRP 是一种常见且严重的遗传性视网膜疾病。XLRP 的特征是光感受器的逐渐退化和丧失,导致视力丧失,并最终导致双侧失明。不幸的是,目前尚无针对 RPGR 相关 XLRP 的有效批准治疗方法。我们试图使用临床相关构建体研究 RPGR ORF15 基因补充在人类 RPGR 缺陷型视网膜类器官 (RO) 中的有效性。使用针对 RPGR 的成熟 CRISPR/Cas9 基因编辑方法生成同源 RPGR 敲除 (KO) 诱导的多能干细胞 (IPSC)。RPGR-KO 和同源野生型 IPSC 分化为 RO,并用于测试腺相关病毒 (AAV) RPGR (AAV-RPGR) 临床载体构建体。使用 AAV-RPGR 转导 RPGR-KO RO 成功恢复了 RPGR mRNA 和蛋白质的表达,并定位到杆状和锥状感光细胞中的感光连接纤毛。载体衍生的 RPGR 显示出与 WT RO 相同的谷氨酰化水平。此外,用 AAV-RPGR 治疗可恢复 RPGR-KO RO 内的视紫红质定位,从而减少对感光外核层的错误定位。这些数据提供了对 RPGR ORF15 基因补充在人类感光细胞中的功能效力的机制见解,并支持了之前报道的在 RPGR 相关 XLRP 患者中使用该载体构建体进行的 I/II 期试验的积极结果,该载体构建体目前正在进行 III 期临床试验。