摘要:量子纠缠是保证量子通信绝对安全的重要因素。本文系统研究了基于电磁诱导透明(EIT)效应产生光场间的连续变量纠缠或双模压缩。本文提出了一种新方案,通过在EIT系统中引入双光子失谐来增强相干态光探测场和耦合场之间的纠缠度。与传统方案相比,该方案利用基态弛豫(布居衰减或失相)率来产生纠缠或双模压缩,从而给系统带来更多的过剩涨落或噪声,效率更高。此外,在给定光学深度下,可以在较宽的耦合Rabi频率和双光子失谐范围内实现最大纠缠度,表明该方案稳健且灵活。值得注意的是,虽然 EIT 是微扰极限下的效应,即探测场比耦合场弱得多并被视为微扰,但存在探测场与耦合场强度的最佳比率以实现最大纠缠。我们提出的方案可以推进基于连续变量的量子技术,并可能在利用压缩光的量子通信中得到应用。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
摘要 激光扫描是获取地形及其上物体的高精度最新空间数据的方法之一。LIDAR(光探测和测距)是最现代、发展最快的技术之一,它揭示了迄今为止传统方式无法实现的测量新功能。本出版物的目的是展示使用机载激光扫描数据进行能源网络测量和可视化的可能性,以及使用 TerraSolid 软件包识别现有网络对周围环境构成的危险。根据从机载激光扫描获得的两个不同点云,对电力线的两个独立部分进行了测量。第一个的密度为 16 点/平方米,而另一个的密度为 22 点/平方米。该项目是在 MicroStation V8i 软件环境中创建的,使用了芬兰 TerraSolid 公司的 TerraScan 和 TerraModeler 等特殊叠加层。使用不同密度的测试云旨在指示点云的最佳密度,从而允许基于机载激光扫描数据对能源网络进行调查和可视化。该出版物通过特定示例介绍了电力线矢量化和可视化的过程以及对距离电力线危险距离内的物体的检测。还证实了使用符合行业要求的应用激光雷达数据进行电力线调查的可能性。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
摘要:本研究采用基于知识的模糊分类方法,通过分析从数字高程模型 (DEM) 获得的形态参数 (地形属性) 对城市地区可能的土壤地貌进行分类。以柏林市区为例,比较了两种不同分辨率的 DEM 在寻找地貌、土壤类型之间的特定关系以及这些 DEM 用于土壤制图的适用性方面的潜力。几乎所有的地形参数都是从高分辨率光探测和测距 (LiDAR)-DEM (1 m) 和先进星载热发射和反射辐射计 (ASTER)-DEM (30 m) 获得的,这些参数被用作对选定研究区域内地貌进行分类的阈值,总面积约为 39.40 km 2 。通过将地面点样本作为地面真实数据与分类结果进行比较,评估了两种分类的准确性。基于 LiDAR-DEM 的分类在将城市地区的地貌分类为地貌(子)类别方面表现出良好的效果。总体准确度为 93%,这说明该分类结果令人满意。而基于 ASTER-DEM 的分类准确度为 70%。基于 ASTER-DEM 的分类较为粗糙,需要与土壤形成因素直接相关的更多详细信息来提取地貌参数。在对地貌进行分类时,使用 LiDAR-DEM 分类的重要性尤为明显
摘要:本文探讨了使用融合 Sentinel-2 影像(2016 年,ESA)和光探测和测距 (LiDAR) 点云实现土地覆盖制图自动化的可能性,主要重点是探测和监测森林覆盖区域,并获取有关复垦区植被空间(2D 和 3D)特征的精确信息。这项研究针对复垦区进行——位于波兰东南部的两个前硫磺矿,即 Jezi ó rko,其中 216.5 公顷的森林覆盖区在钻孔开采后得到复垦,以及 Mach ó w,其中 871.7 公顷的垃圾场在露天开采后得到复垦。根据 Sentinel-2 图像处理得出 Machów 和 Jeziórko 前硫磺矿的当前土地利用和土地覆盖 (LULC) 等级,并确认了两个分析区域所应用的复垦类型。以下 LULC 等级显示出显著的空间范围:阔叶林、针叶林和过渡林地灌木。不仅在占用面积方面,而且在树木和灌木的生长方面,都证实了森林覆盖区域的进展。研究结果显示植被参数存在差异,即高度和树冠覆盖率。还观察到了植被生长的各个阶段。这表明植被生长过程正在进行中,这是这些区域填海工程的效果。
本研究于 2002 年和 2003 年进行,旨在评估先进测绘技术对联邦公路管理局联邦土地公路部门典型任务的适用性。地面激光扫描系统已被确定为一种可用于测绘任务的新兴技术。该研究包括在加利福尼亚州里弗赛德现有项目现场对激光扫描方法进行现场演示。陡峭的地形和茂密的灌木丛导致能见度受限,无法成功对许多目标位置进行地形测绘。地面激光扫描在那些能见度和访问不太复杂且可以利用点云数据提供的丰富细节和准确性的有限应用中具有优势。可能的示例应用可能是历史资源的记录或结构的详细测绘。机载光探测和测距 (LiDAR) 与地面激光扫描类似,但其向下看的视角和快速的线性覆盖更适用于路线测量。 LiDAR 任务可提供大量数据点,通过点云数据实现可视化和虚拟地形测绘。机载 LiDAR 还发现,在茂密的植被中,可见度有限,因此森林茂密的地区和浓密的灌木丛并不是最佳应用。还必须考虑
光探测和测距 (LiDAR) 是一种成熟的主动遥感技术,可以提供地形和非地面物体(如植被和建筑物等)的精确数字高程测量。需要去除非地面物体才能创建数字地形模型 (DTM),该模型是仅代表地面点的连续表面。本研究旨在比较分析三种主要的去除非地面物体的滤波方法,即高斯低通滤波器、焦点分析均值滤波器和基于不同窗口大小的 DTM 斜率滤波器,以从机载 LiDAR 点云创建可靠的 DTM。分析中使用了 ISPRS WG III/4 提供的在德国 Vaihingen 上空捕获的纯住宅区 LiDAR 数据样本。视觉分析表明,高斯低通滤波器使衰减的高频物体的 DTM 变得模糊并强调了低频物体,而在较大的窗口大小下它可以更好地去除非地面物体。与高斯低通滤波器相比,焦点分析均值滤波器表现出更好的非地面物体去除效果,尤其是在窗口尺寸较大的情况下,非地面物体的细节在窗口尺寸为 25 × 25 及更大的 DTM 中几乎消失了。基于斜率的 DTM 滤波器创建的裸地模型在非地面物体的位置充满了缝隙,这些缝隙的尺寸和数量有所增加
腔QED的实验进步正在提高使用光探测线性响应状态以外的量子量的前景。访问量子相干现象的能力将显着提高领域。但是,已经选择了在量子相干制度中耦合到偶联的多体系统的理论工作。在这里,我们研究了微波炉中有限尺寸的量子线的辐射特性。量子线的示例包括单壁碳纳米管,这是纳米磁和等离子体模型领域中的关键实验系统。我们发现,对于多种激发态,光子的重复发射会导致多体量子纠缠的产生。这导致发射后续光子的速率增加,这是Dicke超级散发的一个例子。另一方面,保利的阻塞倾向于减少这种影响。在这种情况下,发现对一维电子系统的激发作为玻色子的激发的描述是一种强大的理论工具。它的应用意味着我们的许多结果都概括为具有强电子相互作用的电线。因此,量子线代表了一个新的平台,可以实现Dicke-Model物理学,而Dicke-Model物理不依赖于涉及许多空间隔离发射器的传统实现中所必需的各种调谐。更广泛地,这项工作证明了如何在多体系统中生成和测量量子纠缠。
AW3D ALOS 世界 3D(近全球高度模型) AW3D30 点间距为 30 米的 AW3D(免费提供高度模型) CAP 共同农业政策(欧盟政策) CCD 电荷耦合器件 CMOS 互补金属氧化物半导体 CORINE 环境信息协调 CORS 连续运行参考站(用于精确 GNSS 定位) DInSAR 差分干涉合成孔径雷达 DSM 数字表面模型(可见表面高度) DTM 数字地形模型(裸地高度) EASA 欧洲航空安全局 EGNOS 欧洲地球静止导航叠加服务 FMC 前向运动补偿 FOV 视场 GCP 地面控制点 GDEM2 ASTER 全球数字高程模型(免费提供 DSM) GNSS 全球导航卫星系统(GPS、GLONASS、伽利略、北斗等) GSD 地面采样距离 HALE 高空长航时 ICAO 国际民用航空组织 InSAR 干涉合成孔径雷达 JRC 欧盟委员会联合研究中心 LiDAR 光探测与测距 - 也称为激光扫描仪 LOD 细节层次(用于城市地图细节) LPIS 地块信息系统 MEMS 微机电系统 - 用于姿态测定 Mpix 百万像素(传感器像素数) NDVI 归一化差异植被指数 NIR 近红外 OCS GE 大规模土地覆盖和土地利用数据库(大尺度太阳辐射职业) PPK 后处理 运动 GNSS