1.01 加勒比共同体气候变化中心(简称“中心”)已向加勒比开发银行(CDB)申请赠款,用于建立收集光探测和测距(LiDAR)数据的能力,并代表其借款成员国(BMC)开展 LiDAR 最终用户培训。拟议的技术援助(TA)符合 CDB 支持包容性和可持续增长与发展的战略目标。1.02 它还符合 CDB 的以下目标:(a) 促进环境可持续性、气候变化(CC)适应力、环境管理和灾害风险管理(DRM)的共同优先事项。(b) 气候适应力战略。1.03 该技术援助与特别发展基金第九周期的主题相一致,即通过加强区域和国家机构改善环境和自然资源管理的能力,支持环境可持续性和推进 CC 议程。 1.04 TA 的直接受益者是中心,将负责协调和实施该项目。该项目的间接受益者是 CDB 的 BMC,他们将能够访问 LiDAR 数据以改善其自然灾害和气候风险管理的决策。1.05 该项目的预计成本为 271.9 万 965 万美元(USD2,719,965 百万美元)。CDB 的贡献将来自特别资金资源 (SFR) 的赠款,金额不高于
由5.9 t活性LXE(166 K)填充的TPC直接检测DM。wimps与LXE核的相互作用产生闪烁光(46ɣ /kev @ 178 nm)。253(顶部)和241(底部)Hamamatsu R11410-21低背景低温PMTS由Hamamatsu和Xenon合作共同开发。PMT选择在操作过程中几乎10%的PMT失败。5%高脉冲率,<5%的光泄漏。1.5 kV偏置,以避免不稳定性,例如瞬态闪光灯。对于所有PMT,在LXE温度下测量了约40 Hz的典型暗计数。
紫罗兰色磷(VP)因其独特的物理化学特性和光电应用中的潜力而引起了很多关注。尽管VP具有类似于其他2D半导体的范德华(VDW)结构,但在底物上直接合成VP仍然具有挑战性。此外,尚未证明由无转移VP akes组成的光电设备。在此,一种二辅助蒸气相传输技术旨在直接在SIO 2 /Si底物上生长均匀的单晶VP Akes。晶体VP平均的大小比以前的液体脱落样品大的数量级。用VP Akes制造的光电探测器显示出12.5 A W - 1的高响应性,响应/恢复时间为3.82/3.03 ms,暴露于532 nm光线后。此外,光电探测器显示出对高敏化光检测有益的小黑电流(<1 pa)。结果,探测率为1.38×10 13琼斯,与VDW P – N异质结探测器的检测率相当。结果揭示了VP在光电设备中的巨大潜力以及单晶半导体薄膜生长的CVT技术。
引言:压缩光是一种光学状态,其中一阶正交的涨落被抑制在散粒噪声极限 (SNL) 以下 [1–9]。随着越来越多的光学技术跨越量子领域,压缩光已成为量子光学和量子信息领域的重要资源。压缩态已成功应用于连续变量量子通信协议 [10–12] 和提高光学传感器 [13](包括引力波探测器 [14])的性能。基于各种非线性材料,已经开发出许多产生压缩光的方法 [3, 9]。常见的是利用非线性晶体中的参量下转换 [1, 2, 15],尽管基于偏振自旋效应 [16–20] 和四波混频 [21–25] 的原子源也在研究中。压缩光的检测通常采用以下三种方式之一:直接强度检测或光子计数(仅适用于强度压缩光)、使用相移腔[3],以及迄今为止这三种方式中最常见的通过用经典本振拍打压缩光场的同差或异差检测。在本信中,我们介绍了一种技术,该技术使我们能够使用 CCD 相机表征位移压缩真空态中的压缩参数,而无需使用相关检测。我们证明压缩量可以从每像素光子统计的一阶和二阶矩推导出来,其精度与同差检测相似。同时,所提出的方法可能特别有利于压缩增强光学成像[26,27]。方法:—我们将强泵浦与压缩真空光混合| ξ ⟩ 在不平衡光束分光器处,反射率 θ << 1,用于泵浦场。泵浦是一个相干
摘要。窄带光进行是用于材料分析和传感的重要测量技术,例如非分散红外传感技术。已经探索了光活性材料工程和纳米光子过滤方案,以实现波长选择的光电检测,而大多数设备的响应性带宽大于操作波长的2%,从而限制了感知性能。在Au/Si Schottky纳米结中,通过实验证明了带宽小于0.2%的近红外照相检测。通过仔细尾随纳米结构中的吸收性和辐射损失,在1550 nm的波长下获得了光电响应的最小线宽。使用波纹的AU膜在芯片上实现了多个功能,包括窄带共振,用于传感和光电检测的光收集以及用于热电子发射的电极。受益于与原位光电传感信号和超核会共振的原位光电转换,通过简单的强度询问进行了独立的芯片生物传感,在Glucose解决方案的浓度下降至0.0047%,用于Glucose解决方案和150 ng ng ml for Rabbit Bitbit Igg。在现场传感,光谱,光谱成像等中应用的这种技术的有希望的潜力。
颅内血肿(ICH)是指头部受伤或脑血管破裂时,血液在脑内或脑与颅骨之间积聚,可导致脑部受压,引起头痛、呕吐、精神错乱,甚至癫痫或昏迷。若不及时治疗,血肿会导致颅内压升高,导致脑损伤或脑疝,严重者可危及生命。快速诊断和干预可大大降低风险,较大的血肿通常需要手术治疗,以避免严重的后遗症。检测血肿是快速诊断血肿的基础,通过准确及时的检测,医生可以快速做出诊断并制定合适的治疗方案,因此,血肿的检测非常重要。
摘要我们根据近红外光谱制度的芯片尺度集成光电探测器的实现和表征,基于在氮化硅硅硅硅基上的摩西2 /WS 2异缝的整合。这种配置在780 nm的波长(表明内部增益机制)下达到〜1 a w -1的高响应性,同时将暗电流抑制至〜50 pa的水平,与仅Mose 2的参考样本相比,降低了〜50 pa的水平。我们测量了暗电流的功率频谱密度低至〜1×10 - 12 a hz -0.5,从中,我们从中提取噪声等效功率(NEP)为〜1×10-12 - 12 W Hz -0.5。为了演示设备的实用性,我们将其用于表征与光电探测器相同芯片上的微林共振器的传输函数。能够在芯片上整合局部光电电视机并在近红外制度下操作具有高性能的设备,这将在光学通信,量子光子学,生物化学传感等的未来集成设备中发挥关键作用。
第 2 部分:钙钛矿层光提取方向模拟细节考虑到 PeLEC 在自发发射模式下运行,我们考虑将一个方位角可变超过 360°(计算期间)的光学点偶极子放置在钙钛矿层内作为发光源。在 SI 图 S1(a) 中,有一个 PeLEC 的光发射提取曲线与点偶极子方向的组合,其中沿基底表面(即在小角度下)实现了最大提取效率,约为 13%。随着点偶极子方向角度的增加,提取效率急剧下降。根据发射光电场矢量模量图,参见 SI 图 S1(b),对于对提取效率贡献最大的较小角度(< 45°),观察到类似于各向同性的角度分布。在这种情况下,我们能够对点偶极子方向角上的提取效率进行平均,并确定平均提取效率,考虑到方位角,平均提取效率为 9.2%。因此,实验观察到的数据可以通过以下假设来解释:大部分 PeLEC 的光发射都被 Si 基板吸收。
摘要:太空和地面任务测量大气中宇宙射线、伽马射线和中微子产生的大面积空气簇射,需要在不同时间尺度上探测非常微弱和强烈的紫外-可见光。新一代硅光电倍增管 (SiPM) 的特性适合于此目的,尤其是对于需要以下特性的太空任务:耐光、重量轻、功耗低和固有增益高。SiPM 的高性能探测能力使其有望用于电荷积分(需要信号中的总电荷量)以及光子计数(需要极高的光电探测器灵敏度,如切伦科夫和荧光光探测)。同时在两种模式下操作 SiPM 的能力实际上严格取决于前端电子设备 (FEE) 的设计。最重要的挑战是找到适当的平衡和可行的解决方案,以便管理带有 FEE 的 SiPM,使其能够同时高效地进行光子计数和电荷积分。在本文中,我们介绍了 RADIOROC,这是一种新型 ASIC,能够同时在两种模式下工作:这样它就能够获取切伦科夫和荧光信号。RADIOROC 将用于创新实验 MUCH,这是一种使用大气切伦科夫成像技术的望远镜,用于探测来自 μ 子切伦科夫光,用于火山射线照相术(μ 射线照相术)以及任何需要对地质或工程结构进行非侵入性射线照相检查的地方,即使是相当大的结构。
通过将 NKT Photonics 的先进光纤激光技术添加到 Hamamatsu Photonics 的光检测技术中,我们获得了光子学中所有必要的技术(可以控制光的所有参数,例如波长、相位、亮度和灵敏度)