颅内血肿(ICH)是指头部受伤或脑血管破裂时,血液在脑内或脑与颅骨之间积聚,可导致脑部受压,引起头痛、呕吐、精神错乱,甚至癫痫或昏迷。若不及时治疗,血肿会导致颅内压升高,导致脑损伤或脑疝,严重者可危及生命。快速诊断和干预可大大降低风险,较大的血肿通常需要手术治疗,以避免严重的后遗症。检测血肿是快速诊断血肿的基础,通过准确及时的检测,医生可以快速做出诊断并制定合适的治疗方案,因此,血肿的检测非常重要。
紫罗兰色磷(VP)因其独特的物理化学特性和光电应用中的潜力而引起了很多关注。尽管VP具有类似于其他2D半导体的范德华(VDW)结构,但在底物上直接合成VP仍然具有挑战性。此外,尚未证明由无转移VP akes组成的光电设备。在此,一种二辅助蒸气相传输技术旨在直接在SIO 2 /Si底物上生长均匀的单晶VP Akes。晶体VP平均的大小比以前的液体脱落样品大的数量级。用VP Akes制造的光电探测器显示出12.5 A W - 1的高响应性,响应/恢复时间为3.82/3.03 ms,暴露于532 nm光线后。此外,光电探测器显示出对高敏化光检测有益的小黑电流(<1 pa)。结果,探测率为1.38×10 13琼斯,与VDW P – N异质结探测器的检测率相当。结果揭示了VP在光电设备中的巨大潜力以及单晶半导体薄膜生长的CVT技术。
由5.9 t活性LXE(166 K)填充的TPC直接检测DM。wimps与LXE核的相互作用产生闪烁光(46ɣ /kev @ 178 nm)。253(顶部)和241(底部)Hamamatsu R11410-21低背景低温PMTS由Hamamatsu和Xenon合作共同开发。PMT选择在操作过程中几乎10%的PMT失败。5%高脉冲率,<5%的光泄漏。1.5 kV偏置,以避免不稳定性,例如瞬态闪光灯。对于所有PMT,在LXE温度下测量了约40 Hz的典型暗计数。
摘要。窄带光进行是用于材料分析和传感的重要测量技术,例如非分散红外传感技术。已经探索了光活性材料工程和纳米光子过滤方案,以实现波长选择的光电检测,而大多数设备的响应性带宽大于操作波长的2%,从而限制了感知性能。在Au/Si Schottky纳米结中,通过实验证明了带宽小于0.2%的近红外照相检测。通过仔细尾随纳米结构中的吸收性和辐射损失,在1550 nm的波长下获得了光电响应的最小线宽。使用波纹的AU膜在芯片上实现了多个功能,包括窄带共振,用于传感和光电检测的光收集以及用于热电子发射的电极。受益于与原位光电传感信号和超核会共振的原位光电转换,通过简单的强度询问进行了独立的芯片生物传感,在Glucose解决方案的浓度下降至0.0047%,用于Glucose解决方案和150 ng ng ml for Rabbit Bitbit Igg。在现场传感,光谱,光谱成像等中应用的这种技术的有希望的潜力。
线粒体在细胞功能中起关键作用,不仅充当细胞的动力,而且还调节ATP合成,活性氧(ROS)产生(ROS),细胞内Ca 2+循环和凋亡。During the past decade, extensive progress has been made in the technology to assess mitochondrial functions and accumulating evidences have shown that mitochondrial dysfunction is a key pathophysiological mechanism for many diseases including cardiovascular disorders, such as ischemic heart disease, cardiomyopathy, hypertension, atherosclerosis, and hemorrhagic shock.方法论的进步一直在加速我们对线粒体分子结构和功能,生物发生以及ROS和能量产生的理解,这促进了新的药物靶标识别和线粒体功能障碍疾病的治疗策略的开发。本综述将重点介绍当前用于线粒体研究的方法论,并讨论其优势,局限性以及线粒体功能障碍在心血管疾病中的影响。
III-V胶体量子点(CQD)在红外光检测中引起了人们的关注,CQDS合成和表面工程的最新发展提高了性能。在这里,这项工作调查了光电探测器的稳定性,发现从电荷传输层(CTL)到CQDS活性层的锌离子的差异会增加其中的陷阱密度,从而导致操作过程中快速且不可逆转的性能损失。在防止这种情况下,这项工作引入了CQD和ZnO层之间的有机阻塞层。但是这些对设备性能产生了负面影响。然后,该设备可以使用C60:BCP作为顶部电子传输层(ETL),以实现良好的形态和过程兼容性,并选择NiO X作为底部孔传输层(HTL)。基于Nio X的第一轮设备显示出有效的光响应,但由于针孔引起的高泄漏电流和低敞开电路(VOC)。这项工作介绍了Poly [Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)(PTAA),它使用Nio X NC形成杂种HTL,这是一种减少针孔形成,界面陷阱密度,界面陷阱密度和双肌发射重组,增强载体,增强的载体。在1 V施加偏置的970 nm处,光电探测器在970 nm处实现53%的外部量子效率(EQE),并且在连续照明操作的19小时后,它们保持了95%的初始性能的95%。光电电视机在80天的架子存储后保留了80%以上的性能。
引言:压缩光是一种光学状态,其中一阶正交的涨落被抑制在散粒噪声极限 (SNL) 以下 [1–9]。随着越来越多的光学技术跨越量子领域,压缩光已成为量子光学和量子信息领域的重要资源。压缩态已成功应用于连续变量量子通信协议 [10–12] 和提高光学传感器 [13](包括引力波探测器 [14])的性能。基于各种非线性材料,已经开发出许多产生压缩光的方法 [3, 9]。常见的是利用非线性晶体中的参量下转换 [1, 2, 15],尽管基于偏振自旋效应 [16–20] 和四波混频 [21–25] 的原子源也在研究中。压缩光的检测通常采用以下三种方式之一:直接强度检测或光子计数(仅适用于强度压缩光)、使用相移腔[3],以及迄今为止这三种方式中最常见的通过用经典本振拍打压缩光场的同差或异差检测。在本信中,我们介绍了一种技术,该技术使我们能够使用 CCD 相机表征位移压缩真空态中的压缩参数,而无需使用相关检测。我们证明压缩量可以从每像素光子统计的一阶和二阶矩推导出来,其精度与同差检测相似。同时,所提出的方法可能特别有利于压缩增强光学成像[26,27]。方法:—我们将强泵浦与压缩真空光混合| ξ ⟩ 在不平衡光束分光器处,反射率 θ << 1,用于泵浦场。泵浦是一个相干
第 2 部分:钙钛矿层光提取方向模拟细节考虑到 PeLEC 在自发发射模式下运行,我们考虑将一个方位角可变超过 360°(计算期间)的光学点偶极子放置在钙钛矿层内作为发光源。在 SI 图 S1(a) 中,有一个 PeLEC 的光发射提取曲线与点偶极子方向的组合,其中沿基底表面(即在小角度下)实现了最大提取效率,约为 13%。随着点偶极子方向角度的增加,提取效率急剧下降。根据发射光电场矢量模量图,参见 SI 图 S1(b),对于对提取效率贡献最大的较小角度(< 45°),观察到类似于各向同性的角度分布。在这种情况下,我们能够对点偶极子方向角上的提取效率进行平均,并确定平均提取效率,考虑到方位角,平均提取效率为 9.2%。因此,实验观察到的数据可以通过以下假设来解释:大部分 PeLEC 的光发射都被 Si 基板吸收。
摘要我们根据近红外光谱制度的芯片尺度集成光电探测器的实现和表征,基于在氮化硅硅硅硅基上的摩西2 /WS 2异缝的整合。这种配置在780 nm的波长(表明内部增益机制)下达到〜1 a w -1的高响应性,同时将暗电流抑制至〜50 pa的水平,与仅Mose 2的参考样本相比,降低了〜50 pa的水平。我们测量了暗电流的功率频谱密度低至〜1×10 - 12 a hz -0.5,从中,我们从中提取噪声等效功率(NEP)为〜1×10-12 - 12 W Hz -0.5。为了演示设备的实用性,我们将其用于表征与光电探测器相同芯片上的微林共振器的传输函数。能够在芯片上整合局部光电电视机并在近红外制度下操作具有高性能的设备,这将在光学通信,量子光子学,生物化学传感等的未来集成设备中发挥关键作用。
英国邓迪大学医学院的人口健康和基因组学部门(英国邓迪大学医学院意大利帕多瓦的国家研究委员会神经科学研究所(Mari PhD);英国埃克塞特埃克塞特大学生物医学与临床科学研究所(T J McDonald PhD,A G Jones PhD); Biostat Solutions,美国医学博士Fredrick(L Li Phd,S Wang PhD);生命实验室科学,化学,生物技术与健康工程科学学院,瑞典斯德哥尔摩KTH皇家技术学院(M-G Hong PhD);研究单位分子流行病学,流行病学研究所II,德国诺伊尔伯格的Helmholtz Zentrum Muenchen(S Sharma PhD);英国牛津大学牛津大学人类遗传学信托基金中心(N R Robertson PhD,Mahajan PhD);生命实验室科学,瑞典乌普萨拉大学医学细胞生物学系,瑞典(X Wang PhD);纽卡斯尔大学纽卡斯尔大学蜂窝医学研究所,英国泰恩省(M Walker Phd教授);丹麦索伯格Novo Nordisk的全球首席医疗办公室(S HER)(高级教授);英国邓迪大学医学院的人口健康和基因组学部门(英国邓迪大学医学院意大利帕多瓦的国家研究委员会神经科学研究所(Mari PhD);英国埃克塞特埃克塞特大学生物医学与临床科学研究所(T J McDonald PhD,A G Jones PhD); Biostat Solutions,美国医学博士Fredrick(L Li Phd,S Wang PhD);生命实验室科学,化学,生物技术与健康工程科学学院,瑞典斯德哥尔摩KTH皇家技术学院(M-G Hong PhD);研究单位分子流行病学,流行病学研究所II,德国诺伊尔伯格的Helmholtz Zentrum Muenchen(S Sharma PhD);英国牛津大学牛津大学人类遗传学信托基金中心(N R Robertson PhD,Mahajan PhD);生命实验室科学,瑞典乌普萨拉大学医学细胞生物学系,瑞典(X Wang PhD);纽卡斯尔大学纽卡斯尔大学蜂窝医学研究所,英国泰恩省(M Walker Phd教授);丹麦索伯格Novo Nordisk的全球首席医疗办公室(S HER)(高级教授);