用于卫星和太空探测器的陀螺仪: • Astrix 系列:用于军事、科学和电信应用的高性能空间光纤陀螺仪,与空中客车防务与航天公司合作开发了 20 多年 • Astrix NS:一款新型、紧凑且具有竞争力的空间陀螺仪 用于发射器的惯性导航系统: • 与赛峰数据系统合作生产的用于阿丽亚娜发射器的安全惯性导航系统 用于空间应用的 LiNbO 3 光调制器 • 用于卫星到卫星、太空到地面的激光通信终端的幅度和相位 LiNbO 3 调制器 • 用于激光腔稳定的相位 LiNbO 3 调制器 空间级光纤 • 具有多种涂层选择的 SM 和 PM 辐射硬化光纤 • 用于光源和放大器的掺铒和掺铒/镱光纤 • 定制设计的空间级光纤以及光纤光源和放大器
理想的全息三维显示应具有大视角、全彩色、低散斑噪声的特点,但现有策略往往限制了全息三维显示的视角,大大阻碍了其广泛应用。本文提出了一种基于最大衍射调制的大视角全息三维显示系统,该系统的核心包括空间光调制器(SLM)和液晶光栅。我们还提出了一种实现大视角全息三维显示的可行新方案,即将SLM的最大衍射角视为每个像点的有限衍射调制范围,不仅可以获得物体的最大全息图尺寸,还可以利用自主设计的液晶光栅调节二次衍射重建像。更重要的是,提出的最大衍射调制方案使系统的视角扩大到73.4°。该系统在教育、文化和娱乐等领域具有巨大的应用潜力。
本报告为我们提供了几个关键要点。值得注意的是,量子优势的确切性质和全部范围,以及实现这些技术对 DOE 相关问题的影响所需的资源,仍然是一个活跃的研究领域。虽然 QIS 在过去几十年中取得了重大的根本性进步,但它仍处于技术发展的初期。仍然存在多个基础和工程挑战。克服这些挑战中的每一个都需要大量的研发、进一步的科学发现和创新。因此,路线图中报告的时间表具有不确定性。不仅需要在 QIS 科学和技术方面取得进展,还需要在封装、系统工程、光调制器、源、探测器、集成、控制、新材料等相邻领域取得进展。此外,一个技术领域的进步将使其他领域受益。例如,量子计算的进步可能会推动网络量子中继器的进步。
摘要:超表面最近在量子领域开辟了许多应用,包括量子断层扫描和量子纠缠态的产生。超表面能够利用纳米结构的各种几何自由度来存储大量信息,有望在处理量子信息方面发挥作用。本文,我们提出并通过实验证明了一种可编程超表面,它能够使用单光子经典光和量子光执行量子算法。我们的方法将多种可编程量子算法和操作(如 Grover 搜索算法和量子傅里叶变换)编码到超表面上的同一超透镜阵列上。空间光调制器选择性地激发不同的超透镜组来执行量子算法,而单光子相机捕获的干涉图案用于提取有关所选输出方向上的输出状态的信息。我们的可编程量子超表面方法作为一种经济有效的量子计算和信息处理组件小型化方法具有良好的潜力。
摘要:超表面最近在量子领域开辟了许多应用,包括量子断层扫描和量子纠缠态的产生。超表面能够利用纳米结构的各种几何自由度来存储大量信息,有望在处理量子信息方面发挥作用。本文,我们提出并通过实验证明了一种可编程超表面,它能够使用单光子经典光和量子光执行量子算法。我们的方法将多种可编程量子算法和操作(如 Grover 搜索算法和量子傅里叶变换)编码到超表面上的同一超透镜阵列上。空间光调制器选择性地激发不同的超透镜组来执行量子算法,而单光子相机捕获的干涉图案用于提取有关所选输出方向上的输出状态的信息。我们的可编程量子超表面方法作为一种经济有效的量子计算和信息处理组件小型化方法具有良好的潜力。
摘要 :超表面最近在量子领域开辟了许多应用,包括量子断层扫描和量子纠缠态的产生。超表面能够利用纳米结构的各种几何自由度来存储大量信息,有望在处理量子信息方面发挥作用。本文,我们提出并通过实验证明了一种可编程超表面,它能够使用单光子经典光和量子光执行量子算法。我们的方法将多种可编程量子算法和操作(如 Grover 搜索算法和量子傅里叶变换)编码到超表面上的同一超透镜阵列上。空间光调制器选择性地激发不同的超透镜组来执行量子算法,而单光子相机捕获的干涉图案用于提取有关所选输出方向上的输出状态的信息。我们的可编程量子超表面方法作为一种经济有效的量子计算和信息处理组件小型化方法具有良好的潜力。
时空结构光为光学和光子学开辟了新的途径。当前对光的时空操控主要依赖于仅相位设备(例如液晶空间光调制器)来产生具有独特光子特性的时空光场。然而,对于时空光的复杂场,同时操纵振幅和相位的能力仍然不足,这限制了可实现的光子特性的多样性和丰富性。在本文中,提出了一种简单而通用的时空全息方法,可以任意塑造时空光。通过生成基本和高阶时空贝塞尔波包、时空晶体状和准晶体状结构以及时空平顶波包,展示了这种简单而强大的方法的能力。完全可定制的时空波包将在研究时空场的动力学和超快时空脉冲与物质之间的相互作用、揭示以前隐藏的光物质相互作用以及解锁光子学和其他领域的突破方面得到更广泛的应用。
摘要——相机传感器依靠全局或滚动快门功能来曝光图像。这种固定功能方法严重限制了传感器捕捉高动态范围 (HDR) 场景和解决高速动态的能力。空间变化像素曝光已被引入作为一种强大的计算摄影方法,用于光学编码传感器上的辐照度并通过计算恢复场景的附加信息,但现有方法依赖于启发式编码方案和庞大的空间光调制器来光学实现这些曝光功能。在这里,我们引入神经传感器作为一种方法,以端到端的方式与可微分图像处理方法(例如神经网络)联合优化每像素快门功能。此外,我们展示了如何利用新兴的可编程和可重新配置的传感器处理器直接在传感器上实现优化的曝光功能。我们的系统考虑了传感器的特定限制来优化物理上可行的光学代码,我们在模拟和真实场景实验中评估了其快照 HDR 和高速压缩成像的性能。
摘要。遗传编码钙指示剂和光遗传学通过利用光以单细胞精度检测和调节神经活动,彻底改变了神经科学。为了充分利用这些技术的巨大潜力,需要先进的光学仪器,能够以高水平的空间和时间精度将光照射到定制的神经元集合上。具有塑造光束能力的现代光雕刻技术是首选,因为它们可以同时精确瞄准多个神经元,并以与自然神经元动力学相匹配的速率调节单个神经元大集合的活动。最通用的方法是计算机生成的全息术 (CGH),它依赖于放置在相干激光束路径中的计算机控制光调制器来合成定制的三维 (3D) 照明模式并根据需要照亮神经集合。在这里,我们回顾了快速和时空精确的 CGH 技术的开发和实施的最新进展,该技术以 3D 形式雕刻光以光学方式询问神经回路功能。 © 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。分发或复制本作品的全部或部分内容需要完全注明原始出版物的出处,包括其 DOI。[DOI:10.1117/1.NPh.9.4.041409]
摘要。人工智能(AI)的最终目标是模仿人的大脑,直接从高维感觉输入中执行决策和控制。衍射光网(DONS)为实现高速和低功率消耗的AI提供了有希望的解决方案。大多数报告的DON专注于不涉及环境互动的任务,例如对象识别和图像分类。相比之下,尚未开发能够决策和控制的网络。在这里,我们建议使用深度强化学习来实施模仿人类级决策和控制能力的DON。这样的网络利用残差体系结构,可以通过与环境互动来找到最佳的控制策略,并且可以轻松地与现有的光学设备实现。使用三种类型的经典游戏来验证出色的性能:TIC-TAC-TOE,SUPER MARIO BROS。和RACENing。最后,我们提出了一个基于空间光调制器网络播放TIC-TAC-TOE的实验证明。我们的工作代表着前进的D型迈出的坚实一步,这有望从简单识别或分类任务转变为AI的高级感官能力的基本转变。它可能会在自动驾驶,智能机器人和智能制造中找到令人兴奋的应用程序。