摘要。本文旨在概述 PRISMA(PRecursore IperSpettrale della Missione Applicativa)任务及其相关的科学预见应用。该任务开发计划实际上处于 C 阶段,完全由 ASI 资助。PRISMA 是一种具有创新电光仪器的地球观测系统,它将高光谱传感器与全色中分辨率相机相结合,利用 ASI 在“小型任务”(例如AGILE)、高光谱有效载荷(例如Hypseo、联合高光谱任务/JHM)、卫星平台(MITA/PRIMA)以及跟踪中心和遥感数据处理中心(COSMO-SkyMed 和 CNM – 多任务国家中心)领域的投资。用户部分提供了全系列的任务产品,包括以下 0、1 和 2 级产品,适用于高光谱和全色数据:在此框架内,已开始进行五项科学研究,研究一些特定的高光谱应用主题和高光谱数据处理程序。
预测“盲测”大鼠血清加标样品中大鼠 IL-6 的浓度,预测值与实际值之间具有较高的一致性和较高的检测限,CV 值较低,< 5% 深蓝线为最小二乘拟合,青色虚线界为 95% CI
尽管成像光谱技术是环境数据采集、分析和建模的有力工具,但热红外遥感的应用和研究还不够完善。随着遥感技术的发展,越来越多的单光谱或多光谱传感器卫星被发射,热红外数据受到越来越多的关注。从热红外数据中反演的发射率和温度对于科学研究和业务应用具有极其重要的意义。地表发射率是一个重要参数,发射率光谱通常用于区分目标特征和解释特征。地表温度是理解地表过程的重要参数。通过测量与特定景观和生物物理成分相关的地表温度,然后将地表温度与特定景观现象或过程的能量通量关联起来(sobrino,
摘要 — 过去二十年,高光谱遥感技术取得了长足进步。目前,机载和星载平台上的传感器覆盖了地球表面的大片区域,具有前所未有的光谱、空间和时间分辨率。这些特性使大量需要精细材料识别或物理参数估算的应用成为可能。这些应用往往依赖于复杂的数据分析方法。困难的根源在于高光谱数据的高维度和大数据量、光谱混合(线性和非线性)以及与测量过程相关的退化机制,如噪声和大气影响。本文介绍了一些相关的高光谱数据分析方法和算法的教程/概述,分为六个主要主题:数据融合、解混、分类、目标检测、物理参数检索和快速计算。在所有主题中,我们描述最先进的技术,提供说明性示例,并指出未来的挑战和研究方向。
摘要 本报告描述了与奥尔基洛托处置场高光谱监测相关的方法。简要介绍了环境遥感,然后更详细地描述了高光谱成像,并回顾了文献中提出的高光谱遥感应用。讨论了未来高光谱成像的趋势,探索了长波红外高光谱成像的可能性。详细介绍了 2008 年在奥尔基洛托地区进行的 HYPE08 高光谱飞行活动。此外,还描述了监测使用中必需的相关预处理和大气校正方法以及所应用的质量控制方法。还描述了文献中提出的各种变化检测方法。最后,提出了一种高光谱监测系统。该系统基于持续的高光谱空中飞行活动和精确定义的数据处理程序。关键词:高光谱成像、环境变化、变化检测、遥感
研究材料与光的光谱相互作用的学科称为光谱学,我们可以从一个简单的问题开始:“光是什么?”。我们用眼睛观察到的光(以及我们看不见的光)是由于能量在空间中以电场和磁场的组合形式传播而产生的,称为电磁波。这种波可以用其波长来表征,可见光区域的光的波长范围从紫色区域的 400 nm 到红色区域的 700 nm。我们都熟悉彩虹的景象,如果彩虹的颜色在图中显示为波长垂直向下增加,那么红色以下是红外线,紫色以上是紫外线。这些区域无法用人眼探测到,但可以使用对这些波长敏感的合适仪器进行研究。对于钻石,我们会发现需要测量所有三个区域。
为了精确地测试物理理论,必须在系统中进行检查,该系统足够简单,以允许精确的理论描述,并且可以高精度地测量。数十年来,氢原子一直被用作测试量子电动力学(QED)系统的系统。由于其简单性,可以使用QED精确计算氢的能级。在实验上,使用激光光谱法精确测量氢中的过渡采石场。通过将实验数据与理论表达进行比较,可以确定两个物理概念,即rydberg常数和原子核的辐射半径,并且可以测试理论本身的有效性。在这项工作中,报告了在氢样离子He +中1s-2s两光子转变的光谱法上的进展。由于他 +具有与氢相同的结构,因此基本上是由同一理论描述的。然而,QED较高的高阶贡献了更大的比例,因为它们在核心充电中具有巨大的能力。通过将1S-2S过渡频率与氦芯的众所周知的电荷半径相结合,可以在不同的系统中首次测量Rydberg常数。该值与从氢光谱获得的值的比较将对QED的普遍性进行严格的测试。这项工作的第一部分涉及离子秋天的结构。目前,氢光谱的准确性受核运动的影响限制。由于其负载,他的 +离子几乎被困在保罗陷阱中,这大大降低了这些影响。大约50个He +离子与一千个激光冷却的Be离子一起被困在一起,可用于交感冷却。在He +离子中刺激1S-2S交叉可以导致三光子电离到2+。一种技术,可以实时和一个个体的一部分来检测这些离子。这被用作光谱法的灵敏和背景检测程序。虽然可以在深层紫外线中进行成熟激光系统的氢光谱法,但有必要刺激1S-2S过渡到He +窄带辐射,波长为60,8 nm。这是在极端紫外线(XUV)中,那里没有永久线激光器。取而代之的是,红外频率梳子的高度密集脉冲在夸张谐振器中的夸张谐振器中转换为XUV。产生的XUV频率梳子的离散时尚可以有效地下雨并实现高光谱分辨率。产生高和谐的频率梳需要特殊的光谱纯度,因此可以在XUV中实现狭窄的时尚。在这项工作的第二部分中,描述了满足此要求的稳定频率梳系统的结构。作为这项工作的一部分,已证明了一项新技术来测量谐振器稳定激光系统的噪声噪声。
在某些基于Fe的超导体的涡流核心中观察到零偏置电导峰,引发了人们对涡旋结合的主要州的重新兴趣。这些材料被认为在其大相位上是内在拓扑的,因此避免了超导体 - 触发器异质结构中遇到的潜在有问题的界面物理学。然而,我们无法衡量非局部涡流的拓扑量子状态(即涡旋对的电荷)的拓扑量子状态,从而阻碍了涡旋主要模式的非阿布尔统计数据的进展。在本文中,我们从理论上提出了Majorana Vortex对电荷的基于微波的电荷奇偶校验读数。涡流上方的微波谐振器可以将其搭配到电荷,从而使Majoraana Parity的分散读数。我们的技术也可以用于常规超导体的涡旋中,并允许人们探测涡流结合的准颗粒的寿命,该粒子目前超出了现有的扫描隧道显微镜功能。
• 2017 年 16 月在阿尔托发射升空 • 两个摄像头:常规和高光谱模块 • 3 种操作模式:6、25 和 75 波长 • 内置温度补偿,板载校准
设置FNIRS实验时,将OPTODES放在头皮上,可以将其限制在源(发射器)和检测器(接收器)中,具体取决于其功能。从源发出的光通过脑外和脑组织传播到几厘米,在光线到达检测器之前,一些光子被分散并吸收。5因此,FNIRS的空间分辨率在5至10 mm 4的范围内取决于源 - 检测器对(或“通道”)的排列在头皮上。6源对与检测器对之间的距离以及它们之间的解剖组织决定了光笔的深度以及对基础皮层的敏感性。1因此,fnirs信号的质量在optode布局之间可能会有巨大不同。optode布局的这种效果与需要稀疏的optode布局(例如大脑 - 计算机接口(BCIS))的应用特别相关。bcis为患有严重运动障碍的临床人群提供了一种替代手段,可以通过使用户能够在没有电动机输出的情况下通过大脑活动发送命令。7,8 fnirs是实施BCI的有前途的选择,因为其可移植性,安全性和相对较低的成本。9,10