基于氧化物固体电解质的全固态电池 (ASSB) 是未来高能量密度、更安全的电池的有希望的候选者。为了估算氧化物基 ASSB 的未来制造成本,对固体氧化物燃料电池 (SOFC) 和多层陶瓷电容器 (MLCC) 生产技术进行了系统的识别和评估。基于需求分析,评估了这些技术在 ASSB 生产中的适用性。使用蒙特卡罗模拟对最有前途的技术进行技术准备情况比较。对氧化物基 ASSB 生产场景的全面概述和系统分析揭示了成熟的湿涂层技术(例如流延和丝网印刷)的显著优势。然而,气溶胶沉积法等新兴技术可能会使高温烧结步骤无效。通过与 SOFC 生产进行比较并采用传统电池生产的学习率,对石榴石基 ASSB 的制造成本进行了估算,表明如果石榴石固体电解质的材料成本可以降低到 60 美元/千克以下,那么电池级(包括外壳)的价格可以低于 150 美元/千瓦时。基于这些发现,可以得出从实验室研究到工业规模的扩大方案,为大规模生产高能量密度的更安全电池铺平道路。
作为全固态电池的核心,固态电解质由于其相对于传统液态电解质的优势而受到充分重视。1–3 各类固态电解质中,聚合物电解质 4–7 由于其优异的机械性能和分子改性而成为研究的重点。8 但其室温离子电导率较差,严重限制了固态锂电池(SSLB)的使用。目前,已采用多种方法来提高固态聚合物电解质的离子电导率,如引入活性填料和惰性填料 9。锂盐,例如 LiTFSI、g-LiAlO 2、10、11 和 LiN 3、12,通常用作活性填料,因为它们可以直接为聚合物体系提供 Li+。惰性填料如 TiO2(参考文献 13)、ZrO2 14 和 Al2O3(参考文献 15,16)可以通过降低聚合物结晶度或将聚合物链与 Li+偶联来提高体系的离子电导率。16,17
使用硫化物固体电解质 (SE) 的全固态电池 (ASSB) 是下一代能源装置的有吸引力的候选者,其寿命比使用有机溶剂的液态锂离子电池 (LIB) 更长。众所周知,即使在干燥室等环境中,硫化物 SE 暴露在潮湿环境中也会导致离子电导率降低并产生有毒的硫化氢。然而,暴露在潮湿环境中对 ASSB 电池性能的影响迄今为止尚未完全阐明。为了填补这一知识空白,本文描述了水分对硫化物 SE 未暴露或暴露在露点为 -20°C 的干燥室模拟空气中的 ASSB 正极耐久性的影响的研究。在电池耐久性评估之后,对正极进行了飞行时间二次离子质谱 (ToF-SIMS) 测量,并利用暴露的 SE 观察了电池中的特征降解模式。
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
*1 环境耐久性:电池的工作温度范围请参阅 Maxell 全固态电池网页详情。https://biz.maxell.com/en/rechargeable_batteries/allsolidstate.html *2 绝对编码器:绝对编码器是一种传感器设备,常用于汽车生产线、机床等工业机器人。其目的是检测机械臂旋转位移和类似测量的绝对值。 *3 可通过回流焊进行表面贴装:在最高温度 245°C 下回流不会降低容量和负载特性等基本特性。
朝着优化钠基全固态电池的制造工艺并通过透射原位 X 射线衍射进行表征的方向发展实验室 Laboratoire de Réactivité et Chimie des Solides - LRCS 实验室主任 Mathieu Morcrette 地址,国家 15 rue Beaudelocque 80000 Amiens, FRANCE www 链接 https://www.lrcs.u-picardie.fr/ 博士论文导师 Vincent Seznec 和 Jean-Noel Chotard 电话 +33322825331 电子邮件 Vincent.seznec@u-picardie.fr jean-noel.chotard@u-picardie.fr 科学项目:全固态电池 (ASSB) 被视为下一代储能系统,与传统的 LIB 或 NIB 相比具有多种优势。 ASSB 通过用在很宽的工作温度范围内都很稳定的固体电解质 (SE) 替代高度易燃的液体有机电解质,解决了爆炸风险。此外,它们可能使用锂或钠金属作为负极,从而增加系统的能量密度 1 。尽管 ASSB 可能带来好处,但在这种技术进入市场之前,必须克服几个问题。首先,必须达到与液体电解质相当的高离子电导率。其次,与液体电解质不同,SE 不能完全浸渍电极界面,这意味着离子渗透效率较低。这会导致高界面电阻,从而降低循环性能和稳定性。第三,由于循环过程中体积的连续变化而产生的机械应变会导致与活性材料失去接触,并最终完全脱离 1 。在此背景下,使用 NaSICON 型固体电解质(如 Na 3+x Zr 2 Si 2+x P 1-x O 12)的 Na 基全固态电池(Na-ASSB)引起了人们的极大兴趣,因为:i)可以使用钠金属作为阳极和不同的阴极材料来构建完整的 Na-ASSB 电池单元 2,ii)NaSICON 固体电解质的电导率在室温下在 3-5.10 -3 S/cm 范围内 3,4。iii) 基于 NaSICON 的 Na-ASSB 已开始提供合理的性能。5 得益于 NaSICON 材料的这些非常好的性能,我们打算实现两个主要目标:
电动汽车对移动电源的需求不断增长,这促使人们致力于开发高性能电化学储能 (EES) 设备。然而,目前的 EES 技术无法满足各种应用对提高性能和安全性以及降低成本和环境足迹的要求。先进材料,包括活性阳极和阴极材料、非活性碳和粘合添加剂、金属集电器、隔膜和电解质,在支持电池运行方面发挥着重要作用。特别是,复合电极和电解质中不同相或组分的界面工程,以及每个组分或多组分设备的分层结构设计,可以解决与电荷传输动力学、电化学特性和化学/物理/机械性能相关的许多基本研究课题。因此,通过研究界面和结构可以提高储能性能、可靠性和安全性。本研究主题旨在强调电化学储能界面、材料和结构设计的最新进展和进展。本研究重点是研究和理解电化学储能装置的界面特性、电极和电解质材料以及分层结构设计,包括锂离子电池、锂金属电池、全固态电池、钠离子电池、多价电池、水基电池、液流电池、超级电容器、混合储能和其他创新系统。本研究主题中的两篇论文重点介绍了钾离子电池方面的成就,涵盖了制造高性能阳极材料的新方法。两篇论文报告了锂硫电池的最新进展,重点介绍了准/全固态电解质和多孔碳纳米纤维电极。
Trek®5/80是用于工业和研究应用中使用的直流稳定的高压功率放大器。它具有全固态设计,可用于高为振动速率,宽带宽和低噪声操作。在整个输出电压范围内,四季度的活跃输出阶段下沉或电源电流到反应性或电阻载荷中。这种类型的输出对于实现精确的输出响应和高度电容性或反应性载荷等各种负载所需的高振动速率至关重要。它被配置为非反向放大器。