全固态电池被认为是锂离子电池最有前途的竞争对手之一。固体电解质的两个广为人知的性能指标是离子电导率和稳定性。本文发现,通过硫化物基固体电解质中氯取代的协同效应,可以改善这两者。具体来说,通过增加对机械收缩引起的电压稳定性增强的敏感性,氯取代的硫化物固体电解质可以更好地抑制由本体分解和电极界面反应引起的不稳定性。因此,一些富氯锂银锑矿的稳定窗口可以系统地高于一些其他缺氯或无氯电解质,尤其是在实施机械收缩电池组装和测试条件下。因此,使用这些富含氯的锂银锗矿,无需额外涂层,就可展示 4 V 至 5 V 级正极与锂金属负极配对的固态电池系统。此外,由于氯组分会调节低电压下锂银锗矿的稳定性和不稳定性,因此我们可以设计具有不同锂金属稳定性层次的多层配置,以展示固态电池在相对高电流密度下的稳定循环。研究发现,电解质中适中的氯组分最能抑制作为中心电解质层的锂枝晶渗透,除了两个众所周知的稳定性和离子电导率指标外,还强调了略微增加的“不稳定性”是这里相关的隐藏性能指标。了解硫化物电解质中的氯取代效应为全固态电池提供了重要的设计原则。
全固态电池的电解质材料 想要彻底改变电池项目的安全性和性能?我们先进的固体电解质为传统液体电解质提供了引人注目的替代品,有可能提高能量密度、提高安全性并延长电池寿命。NEI 的固体电解质材料旨在解决界面兼容性和长期稳定性等关键挑战,为开发更安全、更可靠、性能更高的电池铺平道路。探索我们精选的硫化物、氧化物、磷酸盐、聚合物、NASICON 和卤化物电解质,立即找到最适合您电池需求的材料!
高性能功能材料制造将扩大规模,集团的目标是在 2025 财年实现 600 亿日元的净销售额。我们将努力扩大我们主要业务的收入基础,提供更多 JGC 开发的化学催化剂、硬盘抛光纳米颗粒、半导体制造设备材料和其他产品。另一项投资将是未来和下一代业务发展的战略投资。投资将针对精细化工产品和氮化硅基板设施的开发以及其他应用。开发还将包括碳回收催化剂、全固态电池电解质和骨再生材料。
全固态电池 (ASSB) 的开发是解决储能领域当前和未来挑战的一种有前途的方法。电动汽车和可再生能源或智能手机和笔记本电脑等消费产品的固定式储能应用要求更高的能量密度、更长的循环寿命、更好的循环稳定性和更高的安全性。1–8 从理论上讲,这些要求可以通过用固态电解质(如锂离子导电陶瓷)取代传统锂离子电池中使用的易燃有机液体电解质来实现。结果,可以消除液体成分泄漏的风险,并且在不使用易燃成分的情况下可以显著提高安全性。陶瓷电解质可以提高能量密度,因为它们具有良好的可燃性,并且易于操作。
廉价清洁能源:自组织金属纳米结构实现安全廉价的能源存储......................................................................13 巨热释电效应将废热转化为电能......................................................................................14 能源存储革命:管传输启发的锂电池全固态电解质......................................................................................15 用于高能量密度电池的高性能聚合物基准固态电解质.............................................................................16 高性能、长寿命 Pd@Pt 核壳燃料电池催化剂.............................................................................17 先进的有机光伏(OPV)材料.............................................................................................18 钒液流电池的全面性能改进.............................................................................................19 消除金属卤化物钙钛矿薄膜中晶粒表面凹陷以改进太阳能电池............................................................................................................20
摘要:介电陶瓷电容器具有功率密度高、充放电速度快、耐疲劳性能好、高温稳定性好等优点,被认为是全固态脉冲功率系统的有前途的材料。本文从化学改性、宏微观结构设计和电性能优化的角度研究了线性介电体、弛豫铁电体和反铁电体的储能性能,总结了铅基和/或无铅体系陶瓷块体和薄膜的研究进展。最后,提出了未来脉冲功率电容器储能陶瓷的发展前景。关键词:储能陶瓷;介电体;弛豫铁电体;反铁电体;脉冲功率电容器
ARPA-E 网站列出了该框架下的主要成就,包括 81 个项目的创新影响和技术演示结果(见“ARPA-E 影响:项目成果样本”,第 I 卷至第 III 卷 3 )。例如,由马里兰大学牵头的 ARPA-E 坚固耐用、经济实惠的下一代能源存储系统 (RANGE) 计划 4 包括一个项目,旨在开发用于电动汽车的高耐用性、低成本全固态电池。与传统电池相比,这些电池的技术创新减少了热量的产生,提高了安全性并且无需昂贵的冷却设备。从马里兰大学分离出来的初创公司 Ion Storage Systems 负责演示和商业化,目前正在为量产市场发布做准备。
新材料研究一直推动着锂离子电池、金属空气电池和下一代电池等储能和转换技术的快速发展。近年来,先进材料为制造具有更高能量密度、更好循环性能、更高安全性、更低成本和更长循环寿命的电池提供了巨大的机会。新型材料的研究将继续增长,并在更多应用中变得越来越重要,包括全固态电池。在本期特刊中,我们重点关注面向电池领域应用的先进材料,特别是电极材料和新电解质的进步,包括但不限于新型阳极材料、阴极材料、电解质添加剂、固态电解质、电极添加剂和界面相。本期特刊旨在展示有关电池先进材料的最新更新和未来前景。