简要讨论如何使用上述选定的策略来维持课程中的定期有效联系。定期有效联系人将通过在线演讲,讨论委员会发布,电子邮件通讯,定期公告,及时的分级和作业反馈以及虚拟的办公时间进行实行。定期协助者与学习者之间的这种联系将增强学习者的信心,理解并促进对学科的批判性思维和分析。
摘要背景在恶性胸膜间皮瘤 (MPM) 中,复杂的肿瘤形态导致放射学反应评估不一致。有前景的体积方法需要自动化才能实用。为此,我们开发了一个全自动卷积神经网络 (CNN),进行了盲法验证,并比较了 CNN 和人类对化疗患者的反应分类和生存预测。方法在一项多中心回顾性队列研究中;183 个 CT 数据集被分为训练和内部验证(123 个数据集(80 个完全注释);108 名患者;1 个中心)和外部验证(60 个数据集(全部完全注释);30 名患者;3 个中心)。使用详细的手动注释来训练使用二维 U-Net 架构的 CNN。使用相关性、Bland-Altman 和 Dice 一致性来评估 CNN 性能。体积反应/进展定义为≤30%/≥20% 的变化,并通过 Cohen 的 kappa 与修改后的实体肿瘤反应评估标准 (mRECIST) 进行比较。使用 Kaplan-Meier 方法评估生存率。结果人类和人工智能 (AI) 的体积呈高度相关性 (验证集 r=0.851,p<0.0001)。一致性很强 (验证集平均偏差 +31 cm 3 (p=0.182),95% 限制 345 至 +407 cm 3 )。偶尔出现的 AI 分割错误 (4/60 验证病例) 与裂隙肿瘤、对侧胸膜增厚和邻近肺不张有关。在 20/30 (67%) 验证病例中,人类和 AI 体积反应一致 κ =0.439 (0.178 至 0.700)。 AI 和 mRECIST 在 16/30 (55%) 验证案例中一致 κ =0.284 (0.026 至 0.543)。较高的基线肿瘤体积与较短的生存期相关。结论我们已经开发并验证了第一个用于体积 MPM 分割的全自动 CNN。通过用形态学上具有挑战性的特征丰富未来的训练集,CNN 性能可能会进一步提高。体积反应阈值需要在未来的研究中进一步校准。
RGW60 - 系列包括各种无后坐力、肩射、单人操作、一次性武器,用于反坦克、反车辆和反结构用途。这些 60 毫米口径弹药基于我们久经考验的 RGW 系统概念,该概念具有肩射武器系统领域的最高技术标准。RGW60 平衡了士兵的需求,提供了一种卓越的轻型肩射弹药,可以精确打击各种目标,并且
AI Producer 作为一款会议扩展应用与 Microsoft Teams 无缝集成,可在 Microsoft Azure Marketplace 和 AppSource 中使用。它既是一款“即插即用”的 Saas 产品,又是一款面向企业的托管应用程序。
背景:非小细胞肺癌(NSCLC)是扩散到大脑的最常见肿瘤实体,多达50%的患者发展出脑转移(BMS)。在MRI上检测BMS是具有挑战性的,其固有的诊断风险固有的风险。目的:在临床常规MRI上训练和评估NSCLC中BMS的全自动检测和3D分割的深度学习模型(DLM)。研究类型:回顾性。人口:预处理MRI 315 BMS的98例NSCLC患者分为培训(66例患者,248 BMS)和独立测试(17例患者,67 BMS)和对照(15例患者,0 BMS)同伙。场强/序列:t 1-/t 2加权,T 1加权对比度增强(T 1 CE;梯度回波和自旋回波序列),以及来自各个供应商和研究中心的1.0、1.5和3.0 t的天赋。评估:使用5倍交叉验证对训练队列进行了3D卷积神经网络(DEEPMEDIC),并在独立的测试和控制集中进行了评估。通过神经外科医生和t 1 CE的放射科医生对BMS的三维体素分割,用作参考标准。统计检验:每次扫描的敏感性(回忆)和假阳性(FP)发现,骰子相似性系数(DSC)比较手动分割之间的空间重叠,Pearson的相关性(R)的相关性(R)以评估量化量级的量级测量和WIRCO之间的关系,并评估量级的量级量表,并进行了量级测量。 BMS。p值<0.05在统计学上被认为是显着的。与参考标准相比,自动化结果:在测试集中,DLM检测到67 BMS中的57个(平均体积:0.99 4.24 cm 3),导致灵敏度为85.1%,而每次扫描的FP发现为1.5。错过的BMS比检测到的BMS(0.96 2.4 cm 3)的体积明显小(0.05 0.04 cm 3)。
目的是目前可用的增强现实工作流程,需要使用手动或半自动分段创建3D模型,这是一个耗时的过程。作者创建了一种自动分割算法,该算法从单个T1加权MR序列中生成3D模型的皮肤,大脑,心室和对比度增强的肿瘤,并将该模型嵌入自动工作流中,以在云环境中增强现实的解剖结构的3D评估。在这项研究中,作者验证了该自动分割算法对脑肿瘤的准确性和效率,并将其与手动分割的地面真实集进行了比较。包括五十个对比度增强的T1加权序列,这些序列包括对比增强病变,测量至少5 cm 3。手动分割了地面真相集的所有切片。相同的扫描是在云环境中进行的,以进行自动分割。分割时间。将算法的准确性与手动分割的精度进行了比较,并根据Sørensen-Dice相似性系数(DSC),平均对称的表面距离(ASSD)和Hausdorff距离的95%(HD 95)进行了评估。结果自动分割算法的平均值±SD计算时间为753±128秒。平均值±SD DSC为0.868±0.07,ASSD为1.31±0.63 mm,HD 95为4.80±3.18 mm。脑膜瘤(平均0.89和中位0.92)的DSC大于转移(平均0.84和中值0.85)。自动分割的测量DSC(平均0.86和中位数为0.87)和HD 95(平均3.62 mm和中位3.11 mm)的上流转移的准确性要比依次转移的转移(平均0.82和中位数0.81 and 0.81 and dsc;平均值5.26 mm和median 4.72毫米)的HD 95 95毫米(平均0.82和中位数0.81),用于H.472 95 95 95 95 95 95 95 95 95 95毫米。结论通过提供3D增强对比度增强颅内病变的现实可视化,测量至少5 cm 3,基于云的分割算法是可靠,准确且足够快的,可以在日常临床实践中有助于神经外科医生。下一步涉及将其他序列合并并通过3D微调提高准确性,以扩大增强现实工作流程的范围。
利用数据实现安全:机器学习/人工智能实现及时航空安全 Nikunj C. Oza 博士、Chad Stephens 美国宇航局全系统安全项目 现代喷气式客机每飞行一次记录近 1GB 的原始数据,几乎是不到十年前投入使用的喷气式客机记录数据的两倍。鉴于这一宝贵的数据宝库,数据分析是一项非常重要的能力,它可以将这些数据转化为知识,从而帮助理解和实现安全操作。数据分析的实践涉及应用人工智能 (AI) 和机器学习 (ML) 等方法来获取见解并识别数据中的有意义关系。人工智能是一门专注于在基于计算机的代理中开发模拟人类智能的研究领域。ML 是人工智能的一个分支,涉及开发预测或决策算法,这些算法不是明确编程来预测或决策的,而是从代表过去预测或决策的数据中学习的。您可能体验过 ML 支持的功能,例如 Netflix 或 Amazon 中的自定义推荐。由于机器学习算法具有从过去的操作中学习的能力,因此虚拟助手(例如 Apple 的 Siri 或 Amazon 的 Alexa)以及部分或完全自动驾驶汽车成为可能。
摘要:胶质瘤是最常见的脑肿瘤类型,其等级影响其治疗政策和预后。因此,人们已经研究了基于人工智能的肿瘤分级方法。然而,在大多数研究中,都进行了二维(2D)分析和手动肿瘤区域提取。此外,使用医学图像的深度学习研究在收集图像数据和准备硬件方面遇到困难,从而阻碍了其广泛使用。因此,我们开发了一个 3D 卷积神经网络 (3D CNN) 流水线,通过使用 NVIDIA 提供的预训练 Clara 分割模型和我们原始的分类模型,实现全自动胶质瘤分级系统。在该方法中,使用 Clara 分割模型提取脑肿瘤区域,并将使用该提取区域创建的感兴趣体积 (VOI) 分配给分级 3D CNN 并分类为 II、III 或 IV 级。通过使用 46 个区域进行评估,所有肿瘤的分级准确率为 91.3%,与使用多序列的方法相当。提出的流水线方案可以通过结合预训练的 3D CNN 和我们原来的 3D CNN 在单个序列中创建全自动胶质瘤分级流水线。
摘要:准确分类胶质瘤在临床实践中至关重要。它对临床医生和患者选择适当的治疗方法具有重要意义,有助于促进个性化医疗的发展。在 MICCAI 2020 放射学和病理学联合分类挑战赛中,为每个患者提供了 4 个 MRI 序列和一张 WSI 图像。参赛者需要使用多模态图像来预测胶质瘤的亚型。在本文中,我们提出了一种用于胶质瘤分类的全自动流程。我们提出的模型由两部分组成:特征提取和特征融合,分别负责提取图像的代表性特征和进行预测。具体而言,我们提出了一种用于 3D MRI 体积的无分割自监督特征提取网络。并且通过将传统图像处理方法与卷积神经网络相结合,为 H&E 染色的 WSI 设计了一个特征提取模型。最后,我们融合从多模态图像中提取的特征,并使用密集连接的神经网络来预测最终的分类结果。我们在验证集上使用 F1 分数、Cohen's Kappa 和平衡准确度评估所提出的模型,结果分别达到 0.943、0.903 和 0.889。
摘要 目的。电极设计的进步已导致微电极阵列具有数百个通道,可用于单细胞记录。在由此产生的电生理记录中,每个植入电极可以记录一个或多个神经元的尖峰活动 (SA) 以及背景活动 (BA)。本研究的目的是分离每个神经源的 SA。此过程称为尖峰排序或尖峰分类。高级尖峰排序算法非常耗时,因为在流程的各个阶段都需要人工干预。当前方法缺乏泛化能力,因为超参数的值并不固定,即使对于同一受试者的多个记录会话也是如此。在本研究中,提出了一种称为“SpikeDeep-Classifier”的全自动尖峰排序算法。所有评估数据的超参数值都保持不变。方法。提出的方法基于我们之前的研究 (SpikeDeeptector) 和一种新颖的背景活动拒绝器 (BAR),它们都是监督学习算法和无监督学习算法 (K-means)。 SpikeDeeptector 和 BAR 分别用于提取有意义的通道并从提取的有意义的通道中去除 BA。一旦从数据中完全去除 BA,聚类过程就会变得简单。然后,对仅来自神经源的剩余数据应用具有预定义最大聚类数的 K 均值。最后,使用基于相似性的标准和阈值来保留不同的聚类并合并看起来相似的聚类。所提出的方法称为聚类接受或合并 (CAOM),它只有两个超参数(最大聚类数和相似性阈值),在调整后对于所有评估数据保持不变。主要结果。我们将算法的结果与真实标签进行了比较。该算法在人类患者数据和公开可用的标记非人类灵长类动物 (NHP) 数据集上进行了评估。BAR 在人类患者数据集上的平均准确率为 92.3%,在 (K-means + CAOM) 之后进一步降低到 88.03%。此外,BAR 在公开可用的 NHP 标记数据集上的平均准确率为 95.40%,经过 (K-mean + CAOM) 后降至 86.95%。最后,我们将 SpikeDeep-Classifier 的性能与两位人类专家进行了比较,其中 SpikeDeep-Classifier 产生了可比的结果。意义。SpikeDeep-Classifier 在不同物种、不同大脑区域的多个记录会话的数据集上进行了评估