本文旨在通过在整个研究周期中促进多样性,公平性和包容性(DE&I)原则来增强心血管(CV)研究人员的能力。它定义了DE&I,并引入了CV研究中招聘,保留和团队动态实施的实用策略。在每个研究阶段概述了支持代表性不足的人群参与的基于证据的方法。强调了包容性研究环境的重要意义,该论文提供了指导和资源。我们邀请简历研究人员积极采用DE&I原则,增强研究相关性并解决长期存在的简历健康差异。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2023 年 12 月,美国食品药品监督管理局和英国药品和保健产品管理局首次批准了镰状细胞病的基因组疗法。这项批准为患有这种使人衰弱的遗传病的人们带来了希望。然而,一些障碍可能会阻碍全球患者获得治疗,包括高昂的治疗费用、未成年人获得知情同意、公共卫生基础设施不足以及监管监督不足。这些障碍反映了全球卫生治理固有的结构性不平等,患者获得治疗往往取决于社会和制度安排。本文讨论了知情同意、治疗费用和患者获得治疗方面的担忧,并提出了相应的政策改革。我们认为,这些讨论应该在更广泛的全球背景下进行,考虑社会和制度结构、全球研究重点以及对健康公平的承诺。
* 埃默里大学法学院人工智能、机器学习和数据科学法学教授。本文的一个版本于 2023 年 9 月 28 日在美国大学华盛顿法学院第十二届 Peter A. Jaszi 版权法杰出讲座上发表。本文是在我于 2023 年 7 月 12 日向美国参议院司法委员会知识产权小组委员会关于版权和生成式人工智能的听证会作证时起草的。感谢 Tonja Jacobi 的见解和鼓励。还要感谢 Bryan Choi、Peter Jaszi、Mark Lemley、Ed Lee、Fred von Lohmann、Pam Samuelson、Joshua Simmons、Ben Sobel 和 Ryan Whalen 的反馈。本文是为题为“新人工智能:ChatGPT 和其他新兴技术的法律和伦理影响”的研讨会准备的,该研讨会由《福特汉姆法律评论》主办,并由福特汉姆大学法学院神经科学与法律中心共同赞助,于 2023 年 11 月 3 日在福特汉姆大学法学院举行。
我们进入了一个快速发展的人工智能和机器学习时代,大型语言模型(LLM),视觉语言模型(VLM)和生成性AI越来越多地与我们的生活交织在一起。这些强大的工具具有彻底改变无数领域的潜力 - 从医疗保健到交通,教育到娱乐,我们的工作空间再到房屋。,但没有它的危险就不会产生这种巨大的潜力。我们目睹了由于缺乏鲁棒性,效率和公平性,AI/ML模型未达到我们的期望。例如,微软的AI聊天机器人的“ tay”开始掠夺攻势和不适当的内容,成为AI对虚假功能的敏感性的惊人例子。同样,自动驾驶汽车已经显示出对对抗扰动的脆弱性 - 从战略上放置在停车标志上的简单贴纸欺骗了这些AI模型,以将其错误分类。此外,当面对分配变化时,许多AI模型都步履蹒跚,无法将其从训练到现实世界的条件推广到现实状况,这证明了AI经常记录的斗争,从而识别出代表性不足的群体的面孔。这些模型的效率是增殖AI应用时代的另一个关键问题。由于计算资源和数据隐私是重大限制,我们需要精益且具有数据效率的模型。此外,随着AI模型继续影响医疗保健,招聘和执法等关键领域的决策,公平已成为不可谈判的要求。最近的变压器模型尽管具有令人印象深刻的功能,但由于其对计算资源的需求和广泛的培训数据而臭名昭著,这使我们迫切需要有效的模型设计,数据利用和学习过程。长期公平性尤其具有挑战性,因为这些AI系统经常会遇到随着时间的流逝而不断发展的数据分布,这可能会导致其公平标准偏离。
在这项工作中,我们研究了基于特征的解释对人工智能辅助决策分配公平性的影响,特别关注从简短的文本简历中预测职业的任务。我们还研究了任何影响是如何通过人类的公平感知及其对人工智能建议的依赖来调节的。我们的研究结果表明,解释会影响公平感知,而公平感知又与人类遵守人工智能建议的倾向有关。然而,我们发现这样的解释并不能让人类辨别正确和不正确的人工智能建议。相反,我们表明,无论人工智能建议的正确性如何,它们都可能影响依赖性。根据解释强调的特征,这可能会促进或阻碍分配公平:当解释强调与任务无关且显然与敏感属性相关的特征时,这会提示覆盖与性别刻板印象相符的 AI 建议。同时,如果解释看起来与任务相关,这会引发依赖行为,从而强化刻板印象一致的错误。这些结果表明基于特征的解释不是提高分配公平性的可靠机制。
协变性转移是一种常见的实践现象,可以显着降低模型的准确性和公平性能。在协变量转变下确保不同敏感群体的公平性至关重要,因为诸如刑事司法等社会意义。我们在无监督的制度中运行,其中只有一组未标记的测试样本以及标记的训练集。在这种高度挑战但现实的情景下提高公平性,我们做出了三项贡献。首先是一个基于新型的复合加权熵的目标,以实现预测准确性,并通过代表匹配的损失进行了优化。我们通过实验验证,在帕累托意义上,相对于几个标准数据集的公平性 - 准确性权衡,在帕累托意义上,使用损失配方优化优于最先进的基线。我们的第二个贡献是一个新的环境,我们称之为不对称的协变量转变,据我们所知,以前尚未研究过。与其他组相比,当一个组的协变量显着转移时,发生不对称的协变量转移发生时,当一个主体群体过分代表时,就会发生这种情况。虽然这种设置对当前基线非常挑战,但我们表明我们提出的方法显着胜过它们。我们的第三个贡献是理论,我们表明我们的加权熵项以及训练集的预测损失近似于协变量下的测试损失。通过经验和正式的复杂性界限,我们表明,与看不见的测试损失的近似不取决于影响许多其他基线的重要性采样方差。
近年来,关于可再生能源发展的社会影响的研究和政策讨论越来越多地转向能源公平的概念,即“实现能源系统社会和经济参与的公平目标,同时减轻能源系统对那些受到不成比例伤害的人的社会、经济和健康负担”(能源正义倡议 2019)。然而,尽管能源公平的视角越来越多地应用于风能部署,但社区对风能公平的看法却基本上被忽视了。国家可再生能源实验室 (NREL) 的风能公平参与系列 (WEEES) 致力于通过收集研究人员、决策者、行业专业人士和经历过风能开发的社区的知识,提高对陆基风能公平性的理解。
本文献综述对信用评分模型的公平性评估有关保留不足人群的抵押贷款可及性的公平性。审查审查了各种学术文章,报告和实证研究,这些研究涵盖了各种学科,包括金融,经济学,社会学和公共政策。它研究了现有研究的方法,发现和局限性,以阐明信用评分公平性的多方面维度及其对抵押贷款可及性的影响。首先,审查概述了信用评分公平性的概念框架,强调了平等,透明度和问责制在信用评估过程中的重要性。它探讨了信用评分模型的演变及其对抵押贷款实践的影响,尤其是对于历史上边缘化的社区,例如少数群体,低收入家庭和信用历史有限的个人。其次,审查分析了评估信用评分模型公平性时采用的方法。它标识了用于评估人口统计群体中抵押贷款批准率,利率和贷款条款差异的关键指标和统计技术。第三,审查综合了关于保留不足人群抵押可及性差异的程度和持久性的经验证据。它突出了系统性障碍,包括歧视性贷款实践,嵌入信用评分模型中的偏红线和制度化的偏见。第四,审查讨论了信用评分公平性对金融包容性,社会公平和经济流动性的影响。它强调了对创新政策干预,行业最佳实践和消费者教育计划的需求,以解决抵押贷款贷款中的系统性不平等,并促进包容性的房屋拥有机会,以使保留不足的不足之处,最后,本文献综述提供了对信用评分模型的公平概述,这些概述是在保留不足的人口范围内的抵押贷款范围内的信用评分模型。通过综合经验证据,理论框架和政策影响,它有助于更深入地了解所有人促进公平获得房屋所有权和财务安全的挑战和机遇。
与所有欧盟机构、团体和机构一样,ESMA 是一个提供平等机会的雇主。平等机会原则已融入欧盟工作立法,特别是《工作人员条例》第 1d 条,该条禁止基于任何理由的歧视(例如性别、种族、肤色、族裔或社会出身、遗传特征、语言、宗教或信仰、政治或任何其他观点、少数民族成员身份、财产、出生、残疾、年龄或性取向)。这一原则已完全融入 ESMA 的政策、程序和活动,并成为其在人力资源管理所有领域的基础,从招聘到学习和发展、绩效评估、重新分类和职业晋升、薪酬和福利。
蝴蝶效应这一概念源自混沌理论,强调微小变化如何对复杂系统产生重大且不可预测的影响。在人工智能公平性和偏见的背景下,蝴蝶效应可能源于多种来源,例如算法开发过程中的小偏差或倾斜的数据输入、训练中的鞍点或训练和测试阶段之间数据分布的变化。这些看似微小的改变可能会导致意想不到的、严重的不公平结果,对代表性不足的个人或群体产生不成比例的影响,并延续先前存在的不平等。此外,蝴蝶效应可以放大数据或算法中固有的偏见,加剧反馈回路,并为对抗性攻击创造漏洞。鉴于人工智能系统的复杂性及其社会影响,彻底检查对算法或输入数据的任何更改是否可能产生意想不到的后果至关重要。在本文中,我们设想了算法和经验策略来检测、量化和减轻人工智能系统中的蝴蝶效应,强调了解决这些挑战以促进公平和确保负责任的人工智能发展的重要性。