使用人工智能来处理衍射图像的挑战是需要组装大型且精确设计的训练数据集的挑战。为了解决这个问题,开发了一个称为Resonet的代码库,用于合成这些数据的衍射数据和培训残留神经网络。在这里,共振的两个人均能力:(i)晶体分辨率的解释和(ii)重叠晶格的识别。通过同步加速器实验和X射线自由电子激光实验对衍射图像的汇编进行了测试。至关重要的是,这些模型很容易在图形处理单元上执行,因此可以显着超过常规算法。目前使用共振来为斯坦福同步辐射光源的宏观分子晶体学用户提供实时反馈,但其简单的基于Python的接口使其易于嵌入其他处理框架。这项工作强调了基于物理的模拟对训练深神网络的实用性,并为开发其他模型的开发奠定了基础,以增强衍射收集和分析。
利用固有自旋轨道相互作用的单自旋操控是一种无需人工磁结构即可旋转自旋的技术 [1],这在半导体传输实验和量子信息技术早期至关重要。在本次演讲中,我们将介绍利用耦合多量子点中出现的自旋翻转隧穿项加速电偶极自旋共振的结果。首先,我们介绍与双量子点中的自旋翻转相关的单自旋隧穿 [2]。接下来,我们将讨论以自旋相干方式利用此效应的测量。通过在充分增加点间隧道耦合后将共振微波频率设置为磁自旋分裂,获得的 Rabi 振荡显示出增强的速度,这取决于微波幅度和点之间的能量失谐。双点中的这种自旋旋转概念扩展到三量子点,我们观察到由于扩展的电荷振荡而导致的更大加速
为了实现高效率高密度的低温仪器系统,电源处理电子设备应与传感器和信号处理电子设备一起放置在冷环境中。典型的仪表系统需要通常从处理线频率交流功率获得的低压直流。开关模式电源转换拓扑,例如前进,飞回,推扣和半桥,用于使用脉冲宽度调制(PWM)或谐振控制的高效电源处理。本文介绍了使用市售CMOS和BICMOS集成电路实施的几个PWM和多共振的功率控制电路,以及它们在液氮温度(77°K)下的性能与室温(300%)的性能相比。在低温温度下综合电路的运行在速度提高,闩锁易感性降低,泄漏电流降低以及降低热噪声方面的性能提高。但是,开关噪声以77%的速度增加,而300%则增加。实验室测试的功率控制电路在77°K下成功重新启动。
平面超导传输线谐振器可以在多个谐波共振频率下操作。这允许涵盖具有高灵敏度的广泛光谱状态,例如对于低温微波光谱。这种实验的常见并发症是存在不希望的“虚假”其他共振,这是由于谐振器基板或外壳框中的站立波。识别单个共振的性质(“设计”与“伪造”)对于更高的频率或如果包括未知材料特性的元素,那么对于微波光谱而言,可能会变得具有挑战性。在这里,我们讨论了各种实验策略,以区分共面超导谐振器中设计和虚假的模式,这些谐振器以高达20 GHz的频率范围运行。这些策略包括跟踪共振演变与温度,磁场和微波功率的函数。我们还证明了谐振器的局部修饰,通过应用微量的介电或电子自旋谐振材料,可导致各种共振模式中的特征性特征,具体取决于电或磁性微波场的局部强度。
在连续状态中的新结合和在一个光子三角形的pyra-mid中具有两个半实用铅的长期共振,并据报道,一般定理给出了它们的存在条件。金字塔由连接的开环(长度为l)组成。当连续状态存在于状态连续图内时,它们会引起长寿的共振,以构成金字塔的6个开放环的某些修改长度的特定值。这15个使这些长度通过这些长度来调节这些共振。这项工作中获得的结果适当说明了最终系统之间的状态数量保存以及由独立金字塔和半限制铅所构成的参考。这种保护的尊重使得能够找到最终系统的所有状态,其中包括连续体的界限。这是这项工作的原始性之一。另一个新的一般结果20是连续状态和长寿共振的不同束缚集,以及给出其存在条件的定理。这些结果可能会对连续状态,长期共鸣和通信技术改进的界限的一般研究产生重大影响。
最近,我们考虑了与石墨相比,石墨烯和氧化石墨烯的拉曼光谱如何出现。在评论中,我们提到了Breit-Wigner-Fano(BWF)线的形状,Ferrari和Robertson,2000年被告知代表碳质材料的G带。BWF是一种用于考虑不对称和FANO共振的修改后的洛伦兹函数(请参阅Miroshnichenko等,2010,介绍Fano理论和模型)。例如,Hasdeo等,2014,使用“石墨烯拉曼光谱中的Breit-Wigner-Fano线形状”,因为“声子光谱与电子孔对激发光谱之间的干扰效果”(Hasdeo等人,2014年,Hasdeo hasde-hole taime coptation Spectra之间)。让我们强调,也可以通过使用分裂的洛伦兹函数来获得不对称性。表征BWF函数的内容是“形状共振”的存在,如Bianconi,2003年的图2所示,或者如其他地方给出的(Tanwar等,2022),抗抗抗耐药性的“蘸酱”。
搜索与γ +射流最终状态的事件中的共振,已通过LHC的CMS实验在√s= 13 TEV时收集的质子 - 蛋白质碰撞数据进行了搜索。分析的总数据对应于138 fb -1的集成光度。被考虑的激发夸克和量子黑洞的模型。使用候选射流的射流重建,在数据中测得的γ +喷射质量谱是在标准模型连续性背景上存在共振的。背景是通过与功能形式拟合的质量分布来估计的。数据与指定的标准模型背景没有统计学上的显着偏差。在共振质量和其他参数上以95%置信度的排除限制设置。激发的光味夸克(激发的底部夸克)被排除在6.0(3.8)TEV的质量中。在Arkani Hamed-Dimopoulos-dvali(Randall-Sundrum)模型中,排除了高达7.5(5.2)TEV的质量黑洞的量子。这些较低的质量边界是迄今为止在γ +射流最终状态中获得的最严格的。
不均匀性对量子材料的特性至关重要,但是可以测量它们的方法仍然有限,并且只能访问相关可观察的一小部分。例如,诸如扫描隧道显微镜之类的局部探针已经证明,在纳米长度尺度上,丘比特超导体的电子特性是不均匀的。但是,需要解决高阶相关性的互补技术以阐明这些不均匀性的性质。此外,局部隧道探针通常仅远低于临界温度。在这里,我们开发了一种二维的Terahertz光谱法,以测量来自近乎掺杂的丘陵中层间间的隧道共振的Josephson等离子体回声。这项技术使我们能够研究材料中层偶联的多维光学响应,并从外部无均匀的无均匀宽扩展中拓宽了材料中的固有寿命扩大,以实现中间层间隧道隧道。我们发现,不均匀的扩展持续到临界温度的很大一部分,而这在高于热量增加的寿命拓宽之上可以克服。
两光子激光写入此处用于在近红外光谱区域和可调弹性中制造具有光热功能的3D蛋白质微观结构。rose孟加拉或亚甲基蓝色在牛血清中启动了相互交联的链接,而光热效应来自墨水中的金色非球形对称纳米颗粒。金纳米颗粒对亚甲基蓝的等离激元共振的大量能量转移可防止BSA的有效光合链接。但是,可以在玫瑰孟加拉蛋白质墨水中制造具有光热功能的稳定微观结构。在这些微观结构上,金原子浓度低至1%w/w,可以在800 nm处连续波激光照射下迅速到达高度局部温度(≅1)。连续波激光照射下的光热效率取决于微观结构的厚度,并且可以达到12.2±0.4 /。这些蛋白质微观结构代表了一个有前途的平台,用于将来在田间应用,例如细胞的物理刺激再生纳米医学。
摘要:背景:新颖的神经干预介绍了一系列治疗难治性疾病的创新治疗方法。我们试图表征为第一个人类(FIH)神经调节试验的转化准备和定义转化准备的因素。方法:我们使用了两部分方法,涉及对神经系统和非神经学应用程序的准备就绪的生物医学文献进行探索,以及与利益相关者对利益相关者对使用磁性共振的超声为例的神经制定的决策制定的半结构化访谈。结果:在范围审查中确定了与FIH准备有关的一百三十个因素。试验设计,临床前证据的充分性和风险在生物技术中无处不在。目标器官,目标功能和动物模型的不足是神经干预文献中的主导地位。对这些因素的相对重要性的访谈结果表明,患者和临床医生之间以及受不同条件影响的患者之间的价值,优先级和理解。结论:神经技术对FIH试验的准备就绪,由许多与临床和非临床优先级,感知和价值有关的相互作用因素定义。