I.简介 638 A.原子频率标准和时钟的成分 638 B.频率标准的特性 639 C. 论文范围 639 II.时钟的要求:具有高频、窄线共振的量子系统 639 A.稳定性 639 B. 高频时钟候选者 640 C. 系统效应 641 1.环境扰动 641 a.磁场 641 b.电场 641 2.相对论性偏移 642 a. 多普勒频移 643 b. 引力红移 643 III.光谱纯且稳定的光振荡器 643 A. 激光稳定技术 643 B.稳定光源的远程分布 644 C. 稳定光源的光谱分布 645 IV.光学标准的测量技术 646 A.时钟周期和询问方案 646 B.原子噪声过程 647 C. 激光稳定原子共振 648 V. 捕获离子光频标准 649 A. 捕获离子 650 1.Paul 阱 651 2.线性离子阱 651 B. 冷却技术和 Lamb-Dicke 机制 653 C. 捕获离子的系统频率偏移 653 1.运动引起的偏移 653 2.塞曼效应 654 3.四极偏移 654
在2015年[1]实现了从单个原子中对单个原子的电子自旋共振信号的观察,并且自那时以来已经取得了相当大的进步。(有关其他参考,请参见推荐论文)。最近推荐的两篇论文报告特别引人注目的进展,这应该引起凝结问题以及量子计算社区的关注。在第一张纸中,携带s = 1/2的分子连接到STM尖端,并观察到尖锐的电子自旋共振。该共振的移位可用于感应很小的磁场和电场,并具有易A的尺度空间分辨率。第二篇论文报告了位于表面上的传感器原子的ESR信号的使用,以询问其他两个S = 1/2原子,这些原子在Qubits上使用。使用脉冲场技术证明了显着的连贯性能和两个量子操作。本评论将主要集中在第一篇论文上,最后讨论了第二篇论文。在单个离子水平上显示ESR的知名系统是Diamond的NV中心。[2] NV中心的非常狭窄的共振可用于测量局部磁场,向下降低Micro-Tesla Hz 1/2。通过将钻石放在AFM尖端上,也可以进行扫描。但是,由于NV中心位于与表面的数十纳米尺度上,因此这限制了NV中心与其靶标的距离,因此将空间分辨率与数十纳米的纳米分辨率限制。另一方面,尖端的垂直位置可以变化,这增加了测量磁性
光子结构和时间晶体,其中将时间合并为光线操纵的额外自由度,因此需要开发分析和半分析工具。但是,此类工具当前仅限于特定的配置,从而使几种无法探索的物理现象类似于光子时间晶体。在这种交流中,使用耦合波理论方法,我们在时间周期性的双向介质中揭示了发生的光传播现象,其介电性,渗透性和手性参数是定期时间的功能。与它们的静态对应物相反,我们证明了被考虑的动态媒介夫妇仅共同管理反向传播波。在非恒定阻抗的情况下,我们证明在布里鲁因图中形成了两个一阶动量差距,从而导致参数放大,分别具有不同的扩增因子和相应的右手和左手模式的相应力量。手性的存在在控制灯波信号中通过控制共振的中心,相应的带宽和扩增因子在每种模式下以独特的方式来操纵灯波信号。对于培养基的有限“时间单板”,我们通过分析得出散射系数作为时间和动量的函数,讨论了光学旋转的极端值如何访问手学诱导的负面折射状态的时间类似物。最后,我们证明了椭圆极化可能会改变场取向的机制,而电场在动量间隙中传播,从而同时展示了参数放大。
可以在纳米级上操纵光和物质的量子状态,以提供有助于实施可扩展光子量子技术的技术资源。实验进步取决于光子和量子发射器内部自旋状态之间耦合的质量和效率。在这里,我们演示了一个带有嵌入式量子点(QD)的纳米光子波导平台,该平台既可以实现Purcell-Enhathenced发射和强性手性耦合。设计在滑动平面光子晶体波导中使用慢光效应,并使用QD调整,将发射频率与慢灯区域匹配。模拟用于绘制手性,并根据偶极子发射极相对于空气孔的位置来绘制手续的增强。最高的purcell因子和手性发生在单独的区域中,但是仍然有一个显着的区域,可以获得两者的高值。基于此,我们首先证明了与20±2倍purcell增强的相对应的巨大辐射衰减率为17±2 ns -1(60±6 ps寿命)。这是通过将QD的电场调整到慢灯区域和准共振的声子端谱带激发来实现的。然后,我们证明了具有高度的手性耦合到波导模式的DOT的5±1倍purcell增强功能,实质上超过了所有先前的测量值。共同证明了使用依靠手性量子光学元件的芯片旋转光子剂的可扩展实现中使用QD的出色前景。
量子信息技术中必不可少的量子器件是在硅或蓝宝石晶片上制造的。最近的研究发现,晶片中的声学模式可以在量子态操控中发挥重要作用,包括声学和量子比特态之间的交换操作,从而导致冷却 1,2。声学模式由晶片上制备的压电换能器产生。这通常是材料声学研究最常用的方法,其中电极与换能器粘合,而换能器与感兴趣的样品直接接触。换能器对振荡电压的压电响应将电磁信号转换为机械振荡。在某些情况下,让电极或换能器与样品物理接触是不可取的或不切实际的。在这里,我们展示了一种用于产生和测量材料中声学共振的非接触式技术。Dobbs 3 描述了使用螺线管和静磁场在金属中产生声学共振。电磁信号与机械振动之间的耦合是通过磁场产生的洛伦兹力实现的,从而无需使用压电材料。洛伦兹力发生在金属表面或射频 (RF) 穿透深度内,从而在体内产生声学模式。通过这种方法,我们研究了硅晶片中的高谐波声学模式,精确测量了纵向和横向声速并计算了相应的弹性常数。我们的样品是一块 [001] 单晶硅晶片,一侧覆盖有 Nb 薄膜。样品从最初直径为 15 厘米的商用晶片上切割下来,尺寸为 4mmx 4mmx 330 µ m(浮区,电阻率 > 10,000 Ωcm)。本文详细描述的结果针对的是厚度为 155 nm 的 Nb 薄膜,由 Rigetti Computing 采用高功率脉冲磁控溅射 (HiPIMS) 制备。高达 14 T 的高磁场敏感度测量
技术进步开始将一个以前只是学术性的问题变为现实:计算的基本物理极限是什么?兰道尔的结论 (1) 是,唯一必然需要耗散的逻辑运算是不可逆运算,这一结论促成了可逆、无耗散逻辑器件的设计 (2),促成了仅使用可逆逻辑即可进行计算的发现 (3-4),并促成了计算机的提案,在计算机中,比特(信息的基本量子)由真正的量子力学量子(如自旋)记录 (5-10)。到目前为止,量子力学计算机的提案依赖于“设计汉密尔顿算子”,这些算子是专门为允许计算而构建的,不一定与任何物理系统相对应。相比之下,本报告提出了一类实际上可能可构建的量子计算机。拟议的计算机由弱耦合量子系统阵列组成。计算是通过将阵列置于电磁脉冲序列中来实现的,这些脉冲序列会在局部定义的量子态之间引起跃迁。例如,在一维空间中,计算机可能由聚合物中的局部电子态组成;在二维空间中,计算机可能由半导体中的量子点组成;在三维空间中,计算机可能由晶格中的核自旋组成。在兰道尔极限下运行,只需要耗散即可进行纠错,这里详述的系统是 Deutsch 设想的真正的量子计算机 (6):位可以放置在 0 和 1 的叠加中,量子不确定性可用于生成随机数,并且可以创建表现出纯量子力学相关性的状态 (5-10)。利用量子效应构建分子级计算机的想法并不新鲜 (11-13)。这里详述的提议依赖于共振的选择性驱动,这是 Haddon 和 Stillinger (11) 用来在分子中诱导逻辑的方法,
摘要:等离子聚合物纳米复合材料(即包含等离激元纳米结构的聚合物矩阵)吸引候选者,以开发依靠光 - 物质相互作用的流形技术设备,前提是它们具有固有的特性和处理能力。等离子体纳米复合材料的智能开发需要深入的光学分析,以证明材料性能,以及指导量身定制材料的合成的相关研究。重要的是,来自金属纳米颗粒产生的等离子体共振会影响纳米复合材料的宏观光学响应,从而导致较远和近场的扰动有助于解决材料的光学活性。我们根据带有Au或Ag纳米颗粒的丙烯酸树脂基质分析了两种适合3D打印的纳米复合材料的等离子行为。我们将实验性和计算的UV- VIS宏观光谱(远场)与单粒子电子损失光谱(EELS)分析(近场)进行了比较。我们扩展了Au和Ag等离子体相关的共振的计算,并在不同的环境和纳米颗粒大小上进行了计算。uv- vis和鳗鱼之间的差异取决于所考虑的金属,周围介质和纳米颗粒的大小之间的相互作用。这项研究允许详细比较Au和Ag聚合物纳米复合材料的等离子性能,其等离子响应可以更好地解决,这考虑了其预期的应用(即它们是否依赖于远场或近场相互作用)。关键字:局部表面等离子体共振,金属 - 聚合物纳米复合材料,电子能量损失光谱,UV-可吸光度,远处和近场性能■简介
定量验尸磁共振成像(PMMR)允许测量脑组织的T1和T2松弛时间和质子密度(PD)。定量PMMR值可用于验证后神经成像诊断,例如计算机辅助诊断。到目前为止,常规解剖学脑结构的定量T1,T1和PD验尸值在3 Tesla PMMR应用中尚不清楚。这项基础研究的目的是评估有关各种尸体温度的3 t验尸后磁共振的验证后脑结构的定量值。在50例法医情况下,在尸检之前应用了定量的PMMR脑序列。Measurements of T1 (in ms), T2 (in ms), and PD (in %) values of cerebrum (Group 1: frontal grey matter, frontal white matter, thalamus, caudate nucleus, globus pallidus, putamen, internal capsule) brainstem and cerebellum (Group 2: cerebral peduncle, substantia nigra, red nucleus, pons, middle cerebellar花梗,小脑半球,髓质长圆形)在合成计算的轴向PMMR脑图像中进行。评估的定量值校正了尸体温度。温度依赖性主要是针对T1值的。ANOVA测试导致两组研究的解剖脑结构之间的定量值显着差异。可以得出结论,温度校正了3个TESLA PMMR T1,T2和PD值对于定期解剖学脑结构的表征和歧视是可行的。©2021由Elsevier B.V.这可能为未来的法医脑病变和病理学的先进诊断提供了基础。
本论文描述了旨在提高边界元素方法(BEM)的效率的研究活动,专门关注在声学和电磁模拟领域内的数学和算法挑战。BEM方法中的贡献机会很多,因为该方法在某些特定的应用方案中提出的挑战。BEM中的进步可能包括函数离散化,数值和分析集成或预处理技术。当前,最广泛的扩展技术涉及离散化方法,可以将其描述为低阶,因为它们采用了低阶,通常是一两个表示功能。尽管如此,分析表明,高阶方法在许多情况下提供了更好的计算效率。本论文在这一研究领域中深入研究了各种技术。这项研究扩展到医学成像的领域,特别是在磁共振成像(MRI)中提高(LARMOR)频率共振的高阶挑战。所提出的方法产生了令人鼓舞的结果,表明共振分解过程的潜在改善。引入了二维问题的快速直接求解器,利用从任意结构中提取循环问题。通过制定临时策略,进一步扩展了此方法以支持高阶离散功能。同时,不同的方法可能会导致计算和内存强度之间的不同权衡。一个关键的挑战是与BEM中产生的密集矩阵相关的隐含计算复杂性,在BEM中,标准求解器的时间复杂 - 最多为O(n 3),n是未知数的数量。快速求解器允许减轻这种效果,并且所选方法可能是出现的时间复杂性及其内在适应性之间的妥协。这项研究活动引入了一种多内核方法,旨在有效地压缩涉及多个操作员的BEM矩阵。提出的方法有效地降低了记忆成本,而无需增加计算成本。总而言之,这些活动促进了数值的演变,从工程应用到医学科学的成像技术。
加拿大纽芬兰海岸。对所谓的费森登振荡器的研究一直持续到 1931 年,在此期间,频率从 540 Hz 增加到 1,000 Hz(Lasky,1977 年;Hackman,1984 年;Bjørnø,2003 年;Katz,2005 年)。第一次世界大战中,潜艇成为较弱海军强国的首选武器——用今天的话来说,这是一种“不对称威胁”——刺激了对水下潜艇的探测需求,而这些潜艇本来是隐形的(Cote,2000 年)。潜艇的隐蔽性和海洋的不透明性深刻改变了 20 世纪剩余时间的海战(Keegan,1990 年;Cote,2000 年)。由于声音是唯一能在水中传播可观距离的传输能量,因此必须利用声学回声测距来应对这一威胁。第一次世界大战后出现的最重要的回声测距系统是超声波 ASDIC,这是英国和法国海军合作研制的。ASDIC 是盟军潜艇探测调查委员会的缩写,该委员会在第一次世界大战期间成立,以开展潜艇探测研究。意大利也进行了类似的研究,美国的研究范围更为广泛。1918 年,法国物理学家 Paul Langevin 使用一种设计为以 38 kHz 机械共振的发射器演示了第一个 ASDIC 系统,并用它来估计目标距离和方位(Lasky,1977 年;Urick,1983 年;Burdic,1984 年;Hackman,1984 年;Bjørnø,2003 年;Proc,2005 年)。第一个 ASDIC 舰载系统于 1919 年安装,该系统有一个覆盖式圆顶,使系统可以在船舶移动时运行。工作频率从 20 到 50 kHz 不等。在 20 世纪 20 年代和 30 年代初,ASDIC 被开发用于驱逐舰的反潜战 (ASW)。两次世界大战之间的时期也是水下声学基础研究的时期。这一时期的一个关键发现是,水下较高频率的声音在穿过海水时,其振幅比较低频率的声音衰减得更大。基于这一观察,新型驱逐舰 ASDIC(119 型)的频率范围从