摘要 随着封装的微型化和异质集成化,人们一直致力于开发低温焊料。Sn-58Bi 共晶焊料的熔点为 138°C,是一种颇具吸引力的替代方案。由于 Sn-Bi 焊料的熔点较低,即使在室温下也可能发生 Bi 粗化。本文观察了室温储存过程中 Sn-58Bi 接头的微观结构演变。室温老化导致焊料基体中 Bi 相的溶解和粗化,尤其是在初生 Sn 相和 Sn-Bi 枝晶中。通过纳米压痕测量了单个富 Sn 相和富 Bi 相的力学性能。结果表明,由于溶液强化,老化焊点中富 Sn 相比富 Bi 相具有更高的杨氏模量和硬度。Bi 相比 Sn 更柔顺,硬度更低。
摘要:激光三维打印已成为基于熔体生长制备高性能Al 2 O 3 基共晶陶瓷的重要技术,但氧空位是该过程中不可避免的晶体缺陷,其形成机理和在沉积态陶瓷中的作用尚不清楚。本文采用激光3D打印制备Al 2 O 3 /GdAlO 3 /ZrO 2 三元共晶陶瓷,通过精心设计的退火实验揭示了氧空位的形成机理,并研究了氧空位对凝固态共晶陶瓷结构和力学性能的影响。揭示了氧空位的形成是由于氧原子通过空位迁移机制从氧化物陶瓷中转移到缺氧气氛中,此外,氧空位的存在对增材制造共晶陶瓷的晶体结构和微观结构没有明显影响。然而这些晶体缺陷的形成会在一定程度上改变陶瓷材料的化学键性质,从而影响沉积态共晶陶瓷的力学性能。研究发现,去除氧空位后,陶瓷材料的硬度降低了3.9%,断裂韧性提高了13.3%。该结果可为调控氧化物陶瓷材料的力学性能提供一种潜在的策略。关键词:氧化物共晶陶瓷;激光3D打印;氧空位;微观结构;力学性能
考虑到各种 F − 离子配位化合物,研究了熔融 LiF – NaF-KF (FLiNaK) 共晶盐中 Cr 0 、Cr 2 + 和 Cr 3 + 氧化状态下铬的热力学稳定性。构建了氟离子活度 (F − 和 CrF 3 − ) 电位图,以预测最稳定的 Cr 氧化态与阴离子活度、铬离子的溶剂化状态和 600°C 时的电位的关系。利用循环伏安法 - 能斯特理论分析法估算了 FLiNaK 盐中这些化合物的吉布斯自由能。为了验证构建的图表,在施加各种电位后对 Cr 进行 X 射线衍射,以确定在固化 FLiNaK 盐中检测到的化合物是否与热力学计算一致。这项工作旨在确定对熔盐核反应堆应用中的铬腐蚀有重要意义的关键热力学因素。 F − 稳定区覆盖了 Cr 自发腐蚀发生的整个区域。除了 p 1/2 H 2 /a HF 等某些条件外,在 HF 存在下(由于水分作为杂质),Cr 可能会自发氧化为 Cr 2 + 和 Cr 3 +。对于氧化的 Cr 溶质在 F − 溶剂中的各种溶剂化状态,这种情况不会发生质的变化,并且对于本文考虑的两种情况(对 1:Cr 0 /CrF 3 − /CrF 6 3 −;对 2:Cr 0 /CrF 4 2 − /CrF 5 2 −),这种情况基本相似。
在新兴互联网(IoT)设备生态系统中使用的巨大潜力,其中多个设备节点与云网络系统共享信息。[1-4]印刷有机电子可以使用新型的构造来实现电子功能的质量产生和整合。[5-10]特别是,有机场效应晶体管(OFET)被视为在物联网中心发现的综合逻辑电路中的关键电子元件。[11,12]具有低压操作(<5 V)的高性能OFET和电荷迁移率超出了无定形硅(0.5-1 cm 2 V –1 S –1)。[13–21]成功的商业化还需要在基板上的许多设备上进行空间均匀的设备性能,包括特征和环境稳定性的可重复性。通常,设备性能在很大程度上取决于材料正常和电极,介电和半导体之间的界面。已经报道了各种改善绩效的策略,例如通过有理分子设计开发新材料,通过热/溶剂退火和添加剂控制形态,形态学控制,用p-/n-掺杂剂和互面剂掺杂分子掺杂,以及界面
紧急情况概述:银灰色、沉重、柔软的金属,在大量燃烧时不会燃烧,但在 245°C 以上的温度下会迅速熔化形成熔融金属池。但是,细小的粉尘云具有中等爆炸危险。这种合金含有 37% 的铅,在火灾情况下产生的烟雾存在吸入和吸收铅的风险。消防应急人员需要佩戴 SCBA 和全套防护服。潜在的健康影响:虽然该产品在销售时不被视为危险品,但本安全数据表包含对安全处理和正确使用产品至关重要的宝贵信息。吸入或摄入该产品的含铅粉尘或烟雾可能会导致头痛、恶心、呕吐、腹部痉挛、疲劳、睡眠障碍、体重减轻、贫血以及腿部、手臂和关节疼痛。长期接触还可能导致中枢神经系统损伤、胃肠道紊乱、贫血、肾功能障碍和可能的生殖影响。应保护孕妇避免过度接触粉尘或烟雾,以防止铅穿过胎盘屏障并导致婴儿神经系统疾病。空气中的铅尘或烟雾被 IARC、ACGIH 和 NTP 视为潜在的人类致癌物(见毒理学信息,第 11 节)。潜在的环境影响:该产品为锡铅合金,不太可能产生直接的生态影响,因为组成金属(即锡和铅)通常不易被生物利用。但是,加工该产品或在水生和陆地环境中长期暴露可能会导致锡和铅化合物以更易被生物利用的形式释放,因此具有潜在的毒性(见生态信息,第 12 节)。第 3 节。成分/成分信息
研究人员更加关注利用离子液体 (IL) 和深共熔溶剂 (DES) 来发展新的载体系统。11 遗憾的是,离子液体和深共熔溶剂表现出热不稳定性、药物负载水平低、药物释放和溶解度低,并且与生物系统的相互作用非常弱,并且具有毒性。这个问题可以通过利用天然深共熔溶剂 (NADES) 来克服。NADES 是一种高度生物相容性的材料,旨在用作载体分子,将药物运送到特定位置而不会产生任何副作用;它是一种由次级代谢产物制备的无毒溶剂,不会影响药物释放机制。12 酚类、萜类、黄酮类和其他天然化合物等次级代谢产物对药物应用至关重要。13,14
我们研究了通过定向能量沉积 (DED) 获得的 Fe-Fe 2 Ti 共晶微观结构,其过共晶成分为 Fe-17.6 at.% Ti。实现了低至 200 nm 的超细层状间距,这种特性只能通过吸铸等方法在薄样品中获得。然而,在层间边界 (ILB) 处观察到主要 Fe 2 Ti 相的球状形态,并带有 Fe 相的晕圈。对于给定的 DED 条件,晶体结构在 ILB 上是不连续的。二维和三维分析方法都用于量化微观结构,包括高分辨率同步全息 X 射线计算机断层扫描 (HXCT)。通过相场建模探索了在定性对应于激光增材制造条件下共晶系统的一般行为,适用于选定的成核场景和从共晶到过共晶的合金成分。虽然模拟提供了有关微观结构形成的宝贵见解,但模拟指出,我们需要进一步加深对增材制造条件下熔化的理解,以便实施合适的成核和/或自由生长模型。模拟还表明,使用精确的共晶合金成分可以防止球状 ILB。
对数据的需求和我们从未见过的水平,对光子和RF电子产品的高量制造的数据需求和大量的光子和RF电子产品。这加速了全自动化的持续适应,并改善了用于销量生产的高级共晶包装和高级产品设计的过程。本文介绍了自动化领域和共晶过程的最新进展,尤其是针对光子学和RF电子组件和微波模块所面临的挑战。这些进步可导致组件和模块制造商的高精度,高通量,提高产量和新产品。电信行业与美国铁路系统之间存在一个有趣的隐喻。通过参考,在1850年有9,021英里的轨道,到1916年,这一数字升级到397,014英里。在大城市之间的第一波骨干铁路开发中,没有足够的商品和人的铁路运输。铁路过度建造了系统,然后停下来等待需求追赶。然后逐渐沿着铁路路线,建造了新的火车站,并开了新的商店。他们建造了更多的短途路线,可以到达小镇,村庄和农场。最后,商业扩大了铁路系统的能力,迫使另一个建筑周期开始。历史表明,随着时间的流逝,驱动力会产生不断变化的周期。我们都记得最后一个周期以2000年左右爆炸的点泡泡结束。近年来,电信行业已经进入了自己的变化周期,其快速扩张阶段是由各种宏观技术和经济因素驱动的。尽管应该指出,但最后一个周期确实创造了伟大的遗产,在此期间,长时间的基础设施进行了重大部署。这为
责任声明:由于特定应用固有的差异,本文所包含的技术信息(包括任何建议产品应用或结果的信息)均不作明示或暗示的陈述或保证。不受限制,不提供适销性或特定用途适用性的保证。用户必须全面评估每个流程和应用,包括适用性、遵守适用法律和不侵犯他人权利,Castolin Eutectic 及其关联公司对此不承担任何责任。