热带珊瑚礁是世界上最多样化和最具生产力的生态系统之一,支持着一系列生态系统产品和服务,为数百万人的福祉做出贡献。然而,由于当地和全球的人为影响,全球珊瑚礁覆盖率正在下降( Wilkinson,1999 )。特别是,全球气候变化导致的大规模白化事件的频率和严重程度预计在未来会进一步增加,并威胁到珊瑚礁的长期生存( Hughes 等人,2017 )。这种海洋生态系统的营养和结构基础依赖于石珊瑚和它们相关的微生物共生体(光合甲藻、细菌、古菌等)之间的互利关系,形成一种称为珊瑚全生物的元生物( Ste ́ venne 等人,2021 )。尽管人们对珊瑚全生物功能的分子基础有了越来越多的了解,但我们的知识仍然存在重大空白。如果我们要充分了解珊瑚宿主与其微生物共生体之间建立和维持相互作用的潜在基本过程,以及珊瑚是否或如何适应环境干扰并生存下来,就必须揭示珊瑚宿主与其微生物共生体之间相互作用的建立和维持的潜在基本过程。模型生物的使用有着成功的记录,并在分子、细胞和发育生物学方面取得了重大进展( Jacobovitz 等人,2023 年)。模型生物 Aiptasia,即 Exaiptasia diaphana,是一种小型海葵,遍布亚热带和热带海洋水域,细胞内寄生着共生的甲藻(科:Symbiodiniaceae)( LaJeunesse 等人,2018 年)。与珊瑚不同,海葵没有碳酸钙骨架,可以在实验室条件下轻松操作和培养,并且可以在兼性共生状态下生存,这允许在非共生对照动物上进行实验(Matthews 等人,2016 年)。自 2008 年正式提出将其作为研究刺胞动物共生的模型系统以来(Weis 等人,2008 年)。越来越多的实验室采用海葵来探索以下研究问题:发育和
草酸是生物体生产的最常见的低分子有机酸之一,它在草酸盐使用和处置的策略中多样化(Smith 2002)。例如,植物可能会在细胞内积聚,以获得电荷平衡,钙调节和防御,而真菌的草酸盐分泌与致病性有关,如Palmieri等人所述。(2019)。相反,细菌可以使用草酸盐作为能量和碳源(Herve等人2016)。在这种情况下,人类落在灰色区域。的确,在人类以及许多非人类动物中,草酸盐是乙二醇代谢的最终产物(Ermer等人。2023),由于酶促库缺乏草酸盐降解酶及其生理功能尚不确定(Palmieri等人2019)。然而,在自然界中草酸盐的广泛存在和使用反对人类中草酸盐的这种还原性的视力。的确,除了微生物或微生物群的结构化群落外,不能认为人类会殖民到外部环境中暴露于外部环境的所有表面,包括肠道,这代表了来自饮食中草酸盐的附加来源。据估计,在健康的个体中,饮食和内源性合成也同样有助于草酸盐水平(Mitchell等人。2019)。微生物群包括细菌和真菌,它们可能整合了宿主代谢途径,从而为草酸盐的合成和降解提供了酶,从而总体上有助于维持其稳态水平。考虑到分别称为原发性(pH)和次级(SH)高氧化尿症的草酸盐积累的病理弊端,这一点尤其重要,这导致肾脏中草酸盐的形成
真菌是高度多样的,并且在生态系统中执行许多关键任务,从有机物的分解到营养物质通过菌丝的易位以及土壤中遥远的壁cor的联系。但是,真菌不孤立地生活;取而代之的是,它们与植物和动物建立了密切的关联,作为其复杂的微生物群的一部分。真菌以其对大多数血管植物的基本菌根共生体的作用而闻名,以及与藻类或蓝细菌的地衣共生的作用;鲜为人知的是它们与细菌和RNA病毒的微生物共生关系[1,2]。在1970年通过显微镜观察到了真菌中的细菌性内膜[3],最近的发现表明,这些内共生细菌可以是某些真菌中突出的特征[1,4]。相比之下,大多数在1962年正式描述[5]最初对其宿主的影响(尽管有些可以减少真菌的生长和毒力)的大多数分枝病毒。根瘤菌是一个真菌的一个充分的例子,可以携带细菌和病毒内共生菌,被称为真菌霍洛比恩(图1)。根茎物种用于生产发酵食品,酶和代谢产物。仍然,它们也可能是农作物(包括草莓,地瓜和大米)的致病性,并在免疫验证的人类中引起致命感染。在其著名的特征中,有能力产生霉菌毒素,包括根茎毒素,根茎及其衍生物。另一个引人注目的分解是R的菌株。孢子形成仅随着真菌 - 细菌共生的重建而恢复[7]。有趣的是,关于根瘤菌毒素产生和非生产菌株的研究表明,参与根蛋白毒素产生的生物合成基因并不是真菌的起源。相反,所有产生根茎毒素的菌株均由细菌共生体定植,这些菌株含有能够产生根蛋白毒素的多酮化合物生物合成基因[6]。缺乏细菌共生体的微孢子不再无性繁殖并形成孢子囊和孢子囊孢子[7]。的确,细菌共生体是在孢子孢子中遗传的(图1),以确保它们向后代的传播[7]。r。Microsporus需要2个兼容伴侣(一种构成类型的阳性(MT+)和一种负型负菌株(MT-)菌株),并与Trisporic Acid(一种性激素)的协作产生,用于形成Zygospores的性激素(图1)。非常明显,
摘要:微生物组组成与疟疾载体中的杀虫剂抗性有关。然而,主要共生体对日益报告的抗药性升级的贡献尚不清楚。这项研究探讨了特定的内共生体Asaia spp。的可能关联,其拟甲虫素耐药性升高,由细胞色素P450S酶和Anopheleles funestus和Anopheles gambiae的电压门控钠通道突变驱动。分子测定法用于检测共生体和电阻标记(CYP6P9A/B,6.5 Kb,L1014F和N1575Y)。总体而言,关键突变的基因分型揭示了与抗性表型的关联。Asaia spp的患病率。在Fumoz_X_FANG菌株中,在5次剂量的Deltamethrin(OR = 25.7; P = 0.002)时与电阻表型相关。蚊子的感染程度更高。此外,丰度与1倍浓度的三分之一的抗性表型相关(p = 0.02,Mann-Whitney测试)。然而,对于Mangoum_x_kisumu菌株,发现的发现却揭示了Asaia载荷与易感表型之间的关联(P = 0.04,Mann-Whitney测试),表明了共生体和苄氯菊酯耐药性之间的负相关。应进一步研究这些细菌,以建立其与其他耐药机制的相互作用,并与其他杀虫剂类别进行交叉抗性。
去除未转化根并在 4-7 周后对转化植物的共生表型进行评分(图 4)。用空载体或靶向 NCR068 的构建体转化的植物的地上部分没有表现出氮缺乏的症状(图 1a、c),用靶向基因 NCR089、NCR128 和 NCR161 的构建体转化的植物表现出相似的生长习性(未显示数据),表明这些植物具有有效的共生固氮能力。用四种选定 NCR 的 sgRNA 构建体转化的根上形成的根瘤细长且呈粉红色,表明它们是功能性根瘤(图 4j、l、n、p)。用 SYTO13 对根瘤切片进行染色,结果显示,针对基因 NCR068、NCR089、NCR128 和 NCR161 诱变的根瘤的细菌定植与在空载体转化的
抽象的许多雌鱿鱼和墨鱼具有共生生殖器官,称为辅助性nidamental腺体(ANG),该器是一个与病原体和结垢生物有关的细菌财团。虽然在多个头足动物家族中发现了ANG,但对这些ANG细菌共生体的全球微生物多样性知之甚少。我们使用16S rRNA基因社区分析来表征来自不同头足类物种的ANG微生物组,并评估宿主和共生系统发育之间的关系。从四个家族(超级订购:decapodiformes)的11种头足类动物的ANG微生物组被表征了7个地理位置。在所有物种中都发现了类载脑杆菌,γ死记菌和黄酮菌的细菌,但通过多个距离指标对扩增子序列变异的分析揭示了头足动物家族的Ang微生物组之间存在显着差异(加权/未加重/未加重/未加重的Unifrac unifrac,bray – bray – bray – ccurtis,p = 0.001),P = 0.001。尽管是从广泛不同的地理位置收集的,但sepiolidae(bobtail squid)的成员共享了许多细菌分类群,包括(〜50%)Opitutae(verrucomicrobia)和Ruegeria(ruegeria)和Ruegeria(Alphaproteobacteria)物种。此外,我们测试了系统生物的生物病,发现宿主系统发育距离与细菌群落差异之间存在正相关(Mantel测试r = 0.7)。这些数据表明,与类似细菌分类单元的不同共生体选择密切相关的sepiolids。总体而言,不同头足类物种的ANG具有不同的微生物组,因此为探索抗菌活性和其他功能作用提供了多样化的共生体群落。
(自适应)辐射已经吸引了进化生物学家,因为很长一段时间以来,它是理想的23模型系统,用于研究通常快速物种形成的模式和过程。但是,尽管有24个(有时已经已经基因组规模)的数据可用于宿主辐射,但很少有研究以25的方式针对其共生体中多元化的模式,尽管它们将是研究共生体形成的出色模型26。我们的评论总结了对通常标志性自适应宿主辐射的27种共生多样化模式的知之甚少,并且在多大程度上28这些模式取决于其宿主的进化轨迹。我们确定了29个研究差距,这些差距需要在将来解决,并讨论了这些研究系统中通常尚未使用的方法30的潜力,例如流行病学疾病建模31和新的Omics技术,以显着促进我们对这些复杂的32生态变化关系的理解。33
背景:ixodes ricinus tick是众多病原体的媒介,这些病原体呈现出严重的健康威胁。此外,它们具有垂直传播的共生体,其中一些与疾病有关。隔离和培养这些共生体的困难阻碍了我们对它们的生物学作用,引起疾病的潜力和传播方式的理解。为了扩展我们对与人类疾病有关的tick共生二氯乙醇中心核的理解,并在人类中与疾病有关,我们使用了16个成年女性tick虫进行了深入的测序。其中,八个是从沿海沙丘环境中收集的,另外八个是从荷兰的森林地区获得的。结果:通过采用下一代和第三代测序技术的组合,我们成功地重建了来自11个个体的线粒体M. M. helvetica的完整基因组,来自八个个体的Helvetica和来自所有tick的线粒体基因组。此外,我们可视化了Helvetica在tick器官和两个共生体的构造基因组代谢模型(GEM)中的位置,以研究其与生长相关的环境依赖性。我们的分析表明,线粒体和线粒体基因组之间存在很强的辅助性,表明频繁的母体传播。相比之下,helvetica和线粒体基因组之间不存在Cophyly,并在雌性的ini ricinus internis seminis中的存在,提高了helvetica的父亲传播的可能性。值得注意的是,除了rick a毒力基因外,发现Helvetica的遗传多样性非常低,在该基因中,在33nt-long重复的插入中的存在导致了显着的差异。但是,这种变化无法解释荷兰八个不同位置观察到的感染率的差异。结论:通过采用深层测序,可以直接从其宿主生物体中提取共生体的完整基因组和遗传数据变得可行。这种方法是一种强大的方法,可以使他们对其相互作用的新见解。我们的观察结果表明,R. helvetica的父亲传播是一种相对尚未开发的壁虱传播方式,需要通过实验研究进行验证。rick中鉴定出的遗传变异r。
皮肤组织,由表皮,真皮和皮下组织组成,是人体最大的器官。它是针对病原体和身体创伤的保护性障碍,在维持体内稳态中起着至关重要的作用。皮肤病,例如牛皮癣,皮炎和白癜风,很普遍,可能会严重影响患者生活的质量。外泌体是脂质双层囊泡,这些囊泡来自具有保守生物标志物的多个细胞,是细胞间通信的重要介体。来自皮肤细胞,血液和干细胞的外泌体是调节皮肤微环境的主要外泌体类型。外泌体发生和传播的失调以及其货物的变化对于炎症和自身免疫性皮肤疾病的复杂发病机理至关重要。因此,外泌体是皮肤病的有希望的诊断和治疗靶标。重要的是,源自皮肤细胞或干细胞的外源外泌体在改善皮肤环境并通过携带各种特定活性物质并涉及多种途径来修复受损的组织中起作用。在临床实践领域,外泌体引起了人们的注意,作为诊断生物标志物和针对皮肤病的前瞻性治疗剂,包括牛皮癣和白癜风。此外,临床研究证实了干细胞衍生外泌体在皮肤修复中的再生功效。这将在诊断和治疗皮肤病方面提供外泌体的新观点。在这篇综述中,我们主要总结了外泌体在皮肤病学中的机制和应用的最新研究,包括牛皮癣,特应性皮炎,白癜风,全身性红斑狼疮,全身性硬化症,全身性硬化症,糖尿病伤口愈合,糖尿病伤口愈合,肥大性疤痕和肥大性疤痕和毛茸茸和皮肤染色。
