具身人工智能是机器学习、计算机视觉、机器人技术和语言技术的集成,最终实现人工智能的“具身化”:能够看、做、思考和行动的机器人。
Evans, L. (2018)。虚拟现实的重新出现。劳特利奇。Farman, J.(2020)。移动界面理论:具身空间和定位媒体。劳特利奇。Featherstone, M.,& Burrows, R. (1996)。网络空间/赛博体/赛博朋克:技术具身文化。SAGE。Fox, J.、Bailenson, J. N.,& Tricase, L. (2013)。性化虚拟自我的具身化:普罗透斯效应和经验
艾伦·图灵开发了图灵测试,作为一种方法来确定人工智能 (AI) 是否能够通过以 30% 以上的置信度回答问题来欺骗人类询问者相信它具有感知能力。然而,图灵测试关注的是自然语言处理 (NLP),而忽略了外观、交流和运动的重要性。本文的核心理论命题:“机器可以模仿人类吗?”既涉及功能性,也涉及物质性。许多学者认为,创造一个在感知上与人类无法区分的逼真的人形机器人 (RHR) 是人类技术能力的顶峰。然而,目前还没有全面的开发框架供工程师实现更高模式的人类模仿,而且目前的评估方法还不够细致,无法检测恐怖谷 (UV) 效应的因果影响。多模态图灵测试 (MTT) 提供了这样的方法,并为在 RHR 中创建更高水平的人类相似性以增强人机交互 (HRI) 奠定了基础
截止时间前8天 - 另外,直接工程成本明细表还应包括与所提供数量等相对应的摘要(对于土木工程,则为标准和尺寸),以及数量、单位、单价、金额等。 建筑成本明细...
摘要 在计算机视觉和机器人领域,具身代理有望探索其环境并执行人类的指令。 这就需要能够根据第一人称观察充分理解 3D 场景,并将其语境化为语言进行交互。 然而,传统研究更多地侧重于从全局视角进行场景级输入和输出设置。 为了解决这一差距,我们引入了 EmbodiedScan,这是一个多模态、以自我为中心的 3D 感知数据集和整体 3D 场景理解的基准。 它包含超过 5k 个扫描,封装了 1M 个以自我为中心的 RGB-D 视图、1M 个语言提示、160k 个 3D 导向框,涵盖 760 多个类别,其中一些与 LVIS 部分一致,以及具有 80 个常见类别的密集语义占用率。 基于这个数据库,我们引入了一个名为 Embodied Perceptron 的基线框架。它能够处理任意数量的多模态输入,并表现出卓越的 3D 感知能力,无论是在我们建立的两个系列基准测试(即基本 3D 感知任务和基于语言的任务)中,还是在野外。
提前获取陌生地方的无障碍信息对于轮椅使用者更好地决定是否进行实地访问至关重要。如今的评估方法,例如电话、照片/视频或 360 度虚拟游览,往往无法提供针对个体差异所需的具体无障碍细节。例如,它们可能无法透露关键信息,例如桌子下面的腿部空间是否足够宽敞,或者设备的空间配置是否方便轮椅使用者使用。针对这一问题,我们提出了 Embodied Exploration,这是一种虚拟现实 (VR) 技术,可提供实地访问的体验,同时保持远程评估的便利性。Embodied Exploration 允许轮椅使用者利用越来越便宜的 VR 耳机,以化身的形式探索物理环境的高保真数字复制品。通过初步的探索性研究,我们调查了需求并不断改进我们的技术。通过对六名轮椅使用者进行真实世界用户研究,我们发现 Embodied Exploration 能够促进远程和准确的无障碍评估。我们还讨论了设计对具体化、安全性和实用性的影响。
基于运动想象的脑机接口 (MI-BCI) 已被提议作为一种中风康复手段,它与虚拟现实相结合,可以将基于游戏的互动引入康复中。然而,MI-BCI 的控制可能难以获得,用户可能会面临糟糕的表现,这会让他们感到沮丧,并可能影响他们使用该技术的积极性。通过增加用户对系统的代理感,可以减少积极性的下降。本研究的目的是了解虚拟现实中描绘的手的化身(所有权)是否可以增强代理感,从而减少 MI-BCI 任务中的挫败感。22 名健康参与者参加了一项受试者内研究,在两种不同的化身体验中比较了他们的代理感:1) 化身手(与身体),或 2) 抽象块。两种表征都以相似的运动闭合以实现空间一致性,并因此弹出气球。手/块通过在线 MI-BCI 控制。每种情况都包括 30 次 MI 激活化身手/块的试验。在每种情况之后,一份问卷调查了参与者的自主感、所有权和挫败感。之后,进行了一次半结构化访谈,参与者详细说明了他们的评分。这两种情况都支持相似水平的 MI-BCI 性能。观察到所有权和自主性之间的显著相关性(r = 0.47,p = 0.001)。正如预期的那样,虚拟手比积木产生更高的所有权。在控制性能时,所有权增加了自主感。总之,基于 BCI 的康复应用程序的设计者可以利用拟人化虚拟形象来对训练过的肢体进行视觉映射,以提高所有权。虽然不能减少挫败感,但只要 BCI 性能足够好,所有权就可以提高感知到的自主性。在未来的研究中,应该在中风患者中验证这些结果,因为他们对自主性和所有权的感知可能与健全用户不同。
远程机器人技术旨在将人类的操作技能和灵巧性在任意距离和任意规模上转移到远程工作场所。透明的远程机器人系统可以实现自然而直观的交互。我们假设机器人系统的具身化(包括三个子组件:所有权、代理和自我定位)可实现最佳的感知透明度并提高任务性能。但是,这尚未得到直接研究。我们根据四个前提进行推理,并从文献中提出支持每个前提的发现:(1)大脑可以具身化非身体物体(例如,机器人手),(2)具身化可以通过介导的感觉运动交互来引发,(3)具身化对机器人系统和操作员身体之间的不一致具有鲁棒性,以及(4)具身化与灵巧的任务性能呈正相关。我们使用预测编码理论作为框架来解释和讨论文献中报告的结果。先前的大量研究表明,通过介导的感觉运动交互,可以在各种虚拟和真实的体外物体(包括假肢、化身和机器人)上诱导化身。此外,非人类形态也可以实现化身,包括细长的手臂和尾巴。根据预测编码理论,没有任何一种感觉方式对于建立所有权至关重要,多感官信号的差异不一定会导致化身的丧失。然而,多感官同步或视觉相似性方面的巨大差异可能会阻碍化身的发生。文献对化身和(灵巧的)任务表现之间的联系提供了较少的广泛支持。然而,用假手收集的数据确实表明了正相关性。我们得出结论,所有四个前提都得到了文献中的直接或间接证据的支持,这表明远程操纵器的化身可能会提高遥控机器人的灵巧表现。这值得进一步对遥控机器人中的化身进行实施测试。我们制定了第一套在远程机器人技术中应用具体化的指导方针,并确定了一些重要的研究课题。
摘要。混合式教育技术可充分利用物理和虚拟操作的互补优势。然而,如何最好地结合这些操作尚不清楚。先前的研究侧重于结合物理和虚拟操作,根据它们是否突出特定概念按顺序提供它们。这项研究大多忽略了可以将学生的概念理解建立在身体动作上的具体学习机制。为了解决这个问题,我们对 80 名本科生进行了一项化学学习实验室实验。我们比较了虚拟和物理操作的不同排序方式,这些方式首先让学生参与到具体体验中,或者使目标概念突出。结果表明,在学习序列的早期提供具体体验可以增强概念学习。这些发现扩展了现有的物理和虚拟操作混合理论,并为混合交互式教育技术的开发人员提供了实用建议。
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。