Lenovo可能不会在所有国家 /地区提供本文档中讨论的产品,服务或功能。请咨询您当地的联想代表,以获取有关您所在地区当前可用的产品和服务的信息。对联想产品,程序或服务的任何引用均无意说明或暗示只能使用Lenovo产品,程序或服务。可以使用任何不侵犯任何联想知识产权权的功能等效产品,程序或服务。但是,用户有责任评估和验证任何其他产品,程序或服务的操作。联想可能拥有专利或尚有专利申请,涵盖本文档中描述的主题。本文档的家具没有为您提供这些专利的任何许可。您可以以书面形式发送许可证查询:
视觉跟踪(VLT)通过整体语言描述增强了传统的视觉对象跟踪,要求跟踪器除了视觉信息之外,还可以灵活地理解复杂而多样的文本。但是,大多数现有的视觉跟踪器仍然过于依赖最初的固定多模式提示,这些提示迫使它为动态变化的目标提供有效的指导。幸运的是,互补学习系统(CLS)理论表明,人类成员系统可以动态存储和利用多模式感知信息,从而适应新的情况。受到此启发,(i)我们提出了一个基于mem-ory的v is-l and an an an an an an gracker(memvlt)。通过将内存建模合并以调整静态提示,我们的方法可以提供自适应提示来跟踪指导。(ii)具体来说,根据CLS理论设计了内存存储和内存相互作用模块。这些模块有助于短期和长期记忆之间的存储和灵活的相互作用,从而生成适应目标变化的提示。(iii)最后,我们在主流VLT数据集上进行了广泛的经验(例如g。,mgit,tnl2k,lasot和lasot ext)。实验结果表明,MEMVLT实现了新的最先进的表现。令人印象深刻的是,它在MGIT上获得了69.4%的AUC和TNL2K的63.3%AUC,将现有最佳结果分别提高了8.4%和4.7%。代码和模型将在以下网址发布:https://github.com/xiaokunfeng/memvlt。
快速行进方法通常用于扩展各个字段中的前面模拟,例如流体动力学,计算机图形和微电子,以恢复级别集合函数的签名距离字段属性,也称为重新启动。为了提高重新距离步骤的性能,已经开发了快速行进方法的并行算法以及对层次网格的支持;后者在局部支持模拟域的更高分辨率,同时限制了对整体计算需求的影响。在这项工作中,先前开发的多网性快速行进方法通过所谓的基于块的分解步骤扩展,以改善层次结构网格的串行和并行性能。OpenMP任务用于基于每个网格的基础粗粒平行化。开发的方法提供了改进的负载平衡,因为该算法采用了高网格分配学位,从而使网格分区与各种网格尺寸之间的平衡。对具有不同复杂性的代表性几何形状进行了各种基准和参数研究。在24核Intel Skylake Computing平台上的各种测试用例中,串行性能提高了21%,而平行速度为7.4至19.1,有效地使以前方法的并行效率增加了一倍。©2021作者。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要 — 混合存储器系统由新兴的非易失性存储器 (NVM) 和 DRAM 组成,已被提出用于满足应用程序日益增长的存储器需求。相变存储器 (PCM)、忆阻器和 3D XPoint 等新兴 NVM 技术具有更高的容量密度、最小的静态功耗和更低的每 GB 成本。然而,与 DRAM 相比,NVM 具有更长的访问延迟和有限的写入耐久性。两种存储器类别的不同特性指向包含多种主存储器类别的混合存储器系统的设计。在新架构的迭代和增量开发中,模拟完成的及时性对于项目进展至关重要。因此,需要一种高效的模拟方法来评估不同混合存储器系统设计的性能。混合存储器系统的设计探索具有挑战性,因为它需要模拟整个系统堆栈,包括操作系统、内存控制器和互连。此外,用于内存性能测试的基准应用程序通常具有更大的工作集,因此需要更长的模拟预热期。本文提出了一种基于 FPGA 的混合存储系统仿真平台。我们的目标是移动计算系统,该系统对能耗敏感,并且可能会采用 NVM 来提高能效。在这里,由于我们的平台专注于混合存储系统的设计,因此我们利用板载硬 IP ARM 处理器来提高模拟性能,同时提高结果的准确性。因此,用户可以使用 FPGA 逻辑元件实现其数据放置/迁移策略,并快速有效地评估新设计。结果表明,与软件 Gem5 相比,我们的仿真平台在模拟时间上加快了 9280 倍。索引术语 — 硬件仿真、FPGA 加速器、内存系统、NVM
生物计算系统以准确性换取效率。因此,降低人工智能系统能耗的一种解决方案是采用本质上对不确定性具有鲁棒性的计算方法。超维计算 (HDC) 就是这样一个框架,它基于这样的观察:人类记忆、感知和认知的关键方面可以通过由高维二进制向量(称为超向量)组成的超维空间的数学特性来解释。超向量定义为具有独立且相同分布 (iid) 分量 1 的 d 维(其中 d ≥ 1,000)(伪)随机向量。当维数为数千时,存在大量准正交超向量。这允许 HDC 使用明确定义的向量空间运算将这些超向量组合成新的超向量,这些运算的定义使得生成的超向量是唯一的,并且具有相同的维数。可以在丰富的超向量代数上构建强大的计算系统 2 。超向量上的群、环和域成为底层计算结构,而排列、映射和逆则是原始计算操作。近年来,HDC 被广泛应用于机器学习、认知计算、机器人和传统计算等各个领域。它在涉及时间模式的机器学习应用中显示出巨大的潜力,例如文本分类 3 、生物医学信号处理 4、5 、多模态传感器融合 6 和分布式传感器 7、8 。HDC 的一个关键优势是训练算法只需一次或几次即可完成:也就是说,对象类别是从一个或几个示例中学习到的,并且只需对训练数据进行一次传递,而不是经过多次迭代。在突出的机器学习应用中,与支持向量机 (SVM) 4 、极端梯度提升 9 和卷积神经网络 (CNN) 10 相比,HDC 以更少的训练示例实现了相似或更高的准确率,与 SVM 11、CNN 和长短期记忆 5 相比,在嵌入式 CPU/GPU 上的执行能耗更低。HDC 在认知计算中的应用包括解决瑞文渐进矩阵 12 、蜜蜂概念学习的功能模仿 13 和类比
机器学习已经在图像分类[1]、视频识别[2]、自然语言处理(NLP)[3]和游戏策略[4]等众多应用中取得了最先进的性能。此外,深度神经网络(DNN)甚至可以在一些任务中超越人类水平的表现,例如ImageNet分类[5]和棋盘游戏围棋[4]。同时,神经网络的复杂度和参数大小在过去几年中飙升。尽管通用图形处理单元(GPGPU)取得了快速发展,但其能源效率仍然远低于终极“智能”——人脑,后者包含10 10个神经元和10 14个突触,但仅消耗约20瓦[6]。其中一个瓶颈来自于冯诺依曼架构将内存和处理单元分开的事实,从而引入了大量的数据移动能量以及数据访问延迟[7]。
摘要高保证加密术的领域很快就已经成熟,但对于端到端的端到端验证了效果有效的加密实现,仍然缺失了尚未确定的基础框架。为了解决此差距,我们使用COQ证明助手正式连接三个现有工具:(1)Hac-特定的紧密加密规范语言; (2)用于效果,高保证加密实现的茉莉语; (3)模块化加密证明的Ssprove基础验证框架。我们首先将HACSPEC与Ssprove连接起来,通过设计了从HACSPEC规范到命令式Ssprove代码的新译本。我们通过考虑从HACSPEC到纯粹的功能性COQ代码的第二次,更标准的翻译来验证这一翻译,并生成两个翻译产生的代码之间的等价性的证明。我们进一步定义了从茉莉蛋白到ssprove的翻译,这使我们能够在ssprove中正式推理有关茉莉蛋白中有效的加密信息。我们证明,相对于Jasmin的操作语义,在COQ中正确地证明了这一翻译。最后,我们通过给出有效的AES的基础端到端COQ证明,证明了方法的有用性。在此案例研究中,我们从使用硬件加速的AE的现有茉莉实现开始,并证明它符合HACSPEC编写的AES标准的规格。我们使用Ssprove基于AES的Jasmin实施来形式化加密方案的安全性。
引言SMP是宏分子的类型,通过更改其宏观特性(例如形状和颜色),然后从其临时形状中恢复其原始形状,从而对外部刺激做出反应。SMP具有轻巧且廉价的优势,并且与形状存储合金(SMA)和形状记忆陶瓷相比,具有低密度,高形状可变形性,良好的生物降解性和易于调整的玻璃过渡温度。SMP的主要缺点是低恢复应力,低变形刚度,较小的能量输出和更长的恢复时间。 为了克服这些缺陷,形状的内存聚合物复合材料(SMPC)已经存在。 对SMPC的研究结果表明,它们具有较高的强度,更高的刚度和由添加填充剂添加的某些特殊特征,这可以比SMP具有进一步的优势。 基于SMP的复合材料通常分为颗粒增强和纤维增强的复合材料。 颗粒增强的SMPC,其填充物为碳黑色,碳纳米管,Fe3O4纳米颗粒等,更多地用作功能材料。 纤维增强的SMPC,其填充剂包括碳,玻璃和凯夫拉尔纤维等,通常由于其良好的机械性能而被用作结构材料。 关于SMP和SMPC的开发和应用有一些出色的评论,例如Liu等人在SMP和SMPC上撰写的评论及其在航空航天应用中的应用。 除此之外,Fengfeng Li等人的一篇文章还向我们解释了形状记忆聚合物及其复合材料在航空航天应用中的进展。SMP的主要缺点是低恢复应力,低变形刚度,较小的能量输出和更长的恢复时间。为了克服这些缺陷,形状的内存聚合物复合材料(SMPC)已经存在。对SMPC的研究结果表明,它们具有较高的强度,更高的刚度和由添加填充剂添加的某些特殊特征,这可以比SMP具有进一步的优势。基于SMP的复合材料通常分为颗粒增强和纤维增强的复合材料。颗粒增强的SMPC,其填充物为碳黑色,碳纳米管,Fe3O4纳米颗粒等,更多地用作功能材料。纤维增强的SMPC,其填充剂包括碳,玻璃和凯夫拉尔纤维等,通常由于其良好的机械性能而被用作结构材料。关于SMP和SMPC的开发和应用有一些出色的评论,例如Liu等人在SMP和SMPC上撰写的评论及其在航空航天应用中的应用。除此之外,Fengfeng Li等人的一篇文章还向我们解释了形状记忆聚合物及其复合材料在航空航天应用中的进展。本评论重点介绍SMP/SMPC材料及其在航空航天领域的应用,其中包括反映天线,SMPC铰链等。我们的目标是跟踪已经完成空间的应用程序
我们提出了3D空间多模式内存(M3),这是一种多模式存储系统,旨在通过视频源保留有关中型静态场景的信息,以供视觉感知。通过将3D高斯脱衣技术与基础模型集成在一起,M3构建了能够跨粒度呈现特征表示的多模式内存,其中包括广泛的知识。在我们的探索中,我们在以前的特征劈叉上确定了两个关键挑战:(1)在每个高斯原始原始原始原始的存储高维纤维中的计算限制,以及(2)蒸馏功能和基础模型之间的未对准或信息损失。为了解决这些挑战,我们提出了M3的主要场景组件和高斯记忆注意的关键组成部分,从而实现了有效的训练和推理。为了验证M3,我们对特征相似性和下游任务以及定性可视化进行了全面的定量评估,以突出显示高斯记忆注意的像素痕迹。我们的方法包括各种基础模型,包括视觉模型(VLM),感知模型以及大型多模式和语言模型(LMMS/LLMS)。此外,为了演示现实世界的适用性,我们在四足机器人的室内场景中部署了M3的功能字段。值得注意的是,我们声称M3是在3D功能蒸馏中挑战核心压缩挑战的第一项工作。
摘要 - 本文以双静态雷达为特征的集成传感和通信(ISAC)系统的基本限制,其中雷达接收器位于发射器附近,并根据发射机的通道输入和反向散射信号估算或检测状态。考虑了两个模型。在第一个模型中,无内存状态序列是根据固定分布分布的,雷达接收器的目的是重建以最小可能的失真为例。在第二个模型中,根据p s或q s分配无内存状态,雷达的目标是检测此基本分布,以便错过检测误差概率具有最大的指数衰减率(最大Stein指数)。与以前的结果相似,我们的基本限制表明,传感和交流之间的权衡仅源于传播的代码字的经验统计,从而影响了这两种性能。主要的技术贡献是两个有力的相反证明,这些证明具有通信误差的所有概率ϵ和过度延伸的概率或误报概率Δ求和到小于1,ϵ +Δ<1。这些证据基于典型序列集的两个平行更改参数,一个量化的更改以获取所需的通信速率绑定,第二个用于绑定传感性能。