生物计算系统以准确性换取效率。因此,降低人工智能系统能耗的一种解决方案是采用本质上对不确定性具有鲁棒性的计算方法。超维计算 (HDC) 就是这样一个框架,它基于这样的观察:人类记忆、感知和认知的关键方面可以通过由高维二进制向量(称为超向量)组成的超维空间的数学特性来解释。超向量定义为具有独立且相同分布 (iid) 分量 1 的 d 维(其中 d ≥ 1,000)(伪)随机向量。当维数为数千时,存在大量准正交超向量。这允许 HDC 使用明确定义的向量空间运算将这些超向量组合成新的超向量,这些运算的定义使得生成的超向量是唯一的,并且具有相同的维数。可以在丰富的超向量代数上构建强大的计算系统 2 。超向量上的群、环和域成为底层计算结构,而排列、映射和逆则是原始计算操作。近年来,HDC 被广泛应用于机器学习、认知计算、机器人和传统计算等各个领域。它在涉及时间模式的机器学习应用中显示出巨大的潜力,例如文本分类 3 、生物医学信号处理 4、5 、多模态传感器融合 6 和分布式传感器 7、8 。HDC 的一个关键优势是训练算法只需一次或几次即可完成:也就是说,对象类别是从一个或几个示例中学习到的,并且只需对训练数据进行一次传递,而不是经过多次迭代。在突出的机器学习应用中,与支持向量机 (SVM) 4 、极端梯度提升 9 和卷积神经网络 (CNN) 10 相比,HDC 以更少的训练示例实现了相似或更高的准确率,与 SVM 11、CNN 和长短期记忆 5 相比,在嵌入式 CPU/GPU 上的执行能耗更低。HDC 在认知计算中的应用包括解决瑞文渐进矩阵 12 、蜜蜂概念学习的功能模仿 13 和类比
主要关键词