摘要:配置储能装置可有效提高风电、光伏等新能源的就地消纳率,缓解外部电网规划建设对新能源并网运行的压力,为此提出一种源荷协同参与的储能容量双层优化配置方法。外部模型引入需求侧响应策略,根据负荷及新能源出力分布特性确定分时电价的峰、平、谷时段,进一步以风光储系统收益最大化为目标。以峰、平、谷电价为决策变量,建立外部优化模型,以优化电价为基础调整各时段用户用电情况,将结果传递至内部优化模型。内部模型以风光储系统中配置功率和储能容量为决策变量,建立综合考虑新能源就地消纳率和储能配置成本的多目标函数,将内层的优化结果反馈给外层优化模型。采用ISSA-MOPSO算法对优化后的配置模型进行求解。最后通过数值算例验证了所提模型及算法在新能源就地消纳率和经济性方面的合理性。
摘要:ATLAS 和 CMS 实验预测高亮度大型强子对撞机(HL-LHC)最内层像素探测器的辐射注量高达 1 × 10 16 1 MeV n eq /cm 2。辐射剂量的增加将导致探测器性能下降,例如漏电流和完全耗尽电压增加,信号和电荷收集效率降低,这意味着有必要开发用于甚高亮度对撞机的抗辐射半导体器件。在我们前期对超快三维沟槽电极硅探测器的研究中,通过模拟不同最小电离粒子(MIP)撞击位置下的感应瞬态电流,验证了从 30 ps 到 140 ps 的超快响应时间。本工作将利用专业软件有限元技术计算机辅助设计(TCAD)软件框架,模拟计算探测器在不同辐射剂量下的全耗尽电压、击穿电压、漏电流、电容、加权场和MIP感应瞬态电流(信号)。通过分析模拟结果,可以预测探测器在重辐射环境下的性能。像素探测器的制作将在中国科学院微电子研究所的CMOS工艺平台上进行,采用超纯高电阻率(高达10 4 ohm·cm)硅材料。
大多数被子植物的茎尖分生组织 (SAM) 呈圆锥形,由高度组织化的细胞层和功能域组成(111)(图 1)。最外层(L1)产生表皮组织,下一层(L2)产生表皮下组织和配子。L1 和 L2 都通过垂周细胞分裂保持为离散的细胞层,由此形成垂直于分生组织表面的新细胞壁,而子细胞则留在其原始层中。因此,从遗传学上讲,L1 和 L2 是克隆。体细胞突变由子细胞遗传,子细胞将保留在同一细胞层中,从而产生嵌合植物组织。分生组织较深区域的细胞形成第三层(L3)。在这里,细胞分裂的方向性较差,L3 产生大部分植物茎组织、维管系统和植物叶片的内层。包括花分生组织在内的新器官原基的生成发生在外周区 (PZ) 中分生组织的侧面,而分生组织的中心由中心区 (CZ) 中未分化且很少分裂的干细胞组成。SAM 和花分生组织 (FM) 具有相同的一般结构,但有一个重要区别:FM 中的干细胞用于
炎症性肠病 (IBD) 是一种结肠慢性炎症疾病,包括溃疡性结肠炎和克罗恩病。地塞米松是一种类固醇抗炎药,可用于 IBD 治疗。本研究旨在获得用于 IBD 治疗的地塞米松药物输送系统的最佳配方,并根据体外溶解试验研究其释放曲线。地塞米松与益生菌嗜酸乳杆菌和长双歧杆菌混合物 (1:1) 结合配制成双包衣片。使用湿法制粒法生产核心片剂,然后在内层涂层上涂上 4% b/v 果胶,在外层涂层上涂上 Eudragit L100 和 S100 (1:4) 的混合物。通过改变益生菌浓度(分别为 0%、16% 和 40%)(分别为 F1、F2 和 F3),制备了三种不同的核心片剂配方。 F1、F2 和 F3 在 0.1 N HCl pH 1.2 中 2 小时的累积药物释放分别为 42.92 ± 1.55%、39.41 ± 4.10% 和 39.39 ± 1.63%,而在 pH 6.8 磷酸盐缓冲液中 12 小时后分别为 102.83 ± 1.56%、105.08 ± 1.70% 和 98.81 ± 3.37%。从结果来看,我们得出结论,所有配方都可以成为开发结肠靶向药物递送的有希望的候选方案。
RAS 蛋白是小分子鸟嘌呤核苷酸结合蛋白,可在非活性 GDP 结合状态和活性 GTP 结合状态之间循环。RAS 位于质膜内层,在生长因子的细胞外刺激下,通过受体酪氨酸激酶 (RTK)(如表皮生长因子受体 (EGFR))的上游信号传导将其激活(图 1a)。生长因子激活 RTK 会诱导其 C 末端酪氨酸 (Tyr) 残基的自身磷酸化。这些磷酸酪氨酸残基可作为两种含 SH2 的衔接蛋白 SHC 和 GRB2 的结合位点,而 SHC 和 GRB2 又会将鸟嘌呤核苷酸交换因子 SOS 募集到膜上。SOS 与 RAS 共定位会导致 RAS 上的 GDP 与 GTP 交换,并激活下游信号传导(Aronheim 等人,1994 年)。然后,通过 RAS 的信号传导被 GTPase 活化蛋白 (GAP) 的活性终止,GAP 刺激 GTP 水解为 GDP,并释放磷酸盐 (Trahey & McCormick 1987, Xu et al. 1990)。在活性状态下,RAS 通过多种下游通路发出信号,包括 RAF/MEK/ERK 和 PI3K/AKT 等,以调节转录、翻译、增殖和存活(详见 Downward 2003)。
仿生材料的开发灵感来源于具有非凡 10 特性或外观的生物材料和生物体,例如出色的机械强度和韧性、自清洁、自修复、鲜艳的色彩 11 等,以开发具有先进功能的材料和产品。珍珠层就是这样一种非凡的灵感来源,它形成 12 贝壳的内层,通常被称为珍珠母。珍珠层由 95 vol% 的脆性无机矿物 13(CaCO 3 )和 5% 的有机聚合物组成,作为砖和砂浆结构,但其断裂功比纯组成矿物高出约 3000 倍 14。模仿珍珠层这种高强度和高断裂韧性的理想组合,为生产替代、可持续的高性能结构和功能材料铺平了道路。 16 最近的研究进展促成了受珍珠层启发的分级结构纤维、薄膜和块状复合材料的制造。本综述讨论了珍珠层形成的化学性质、实体结构的细节以及强化和变形机制。此外,我们还概述了受珍珠层启发的材料的合成工艺和应用的最新趋势和发展。我们重点介绍了分级复合材料,并简要讨论了通过模仿珍珠层的自然形成而合成的人造碳酸盐。21
有关心脏的有趣事实 人的心脏有 4 个腔,每个腔容纳大约 70 毫升血液。上方是右心房和左心房,下方是右心室和左心室。每个腔的出口处都有一个单向瓣膜。这些瓣膜防止血液回流。心脏内的血液只朝一个方向流动。心脏的四个瓣膜有助于控制血流。心脏每次跳动会泵出大约 70 毫升血液。一个体重在 150 到 180 磅的普通成年人体内大约会含有 1.2 到 1.5 加仑的血液。心脏的重量不到人体总体重的 0.5%。心脏壁分为三层:心外膜(最外层)、心肌(中间的肌肉层)和心内膜(内层)。心外膜的功能是保护内层并协助产生心包液。人类心脏的两侧由隔膜隔开,隔膜本质上是心脏的肌肉壁。心房比心室小,其壁更薄。心室的作用是泵血。右心室将血液泵送到肺部,而左心室将血液泵送到身体的所有其他部位。请注意,左心室壁比右心室壁更坚固。事实上,左心室是心脏四个腔中最强的。上腔静脉将血液从上身部位(例如头部、颈部和上肢)输送到心脏,而下腔静脉将血液从其他身体部位输送到心脏。心脏由不由自主工作的心肌组成。心脏根据来自大脑的神经信号自动跳动。上腔静脉和下腔静脉是将血液输送到心脏的两条最大的静脉。人体心脏通过 60,000 英里长的血管、动脉、小动脉、毛细血管、小静脉和静脉网络泵送血液。心包腔是心脏所在的地方。它是一个充满液体的腔体,其壁和内膜由一种称为心包的特殊膜构成。液体的作用是润滑心脏并防止其与周围环境之间的摩擦。每次心跳都会将新鲜血液注入心脏的所有四个腔体。心脏位于血液输送系统的中心。心脏将富含氧气和营养的血液(血液由细胞和血浆组成)泵送到身体的器官、组织和细胞。血液还有一个重要作用,就是清除这些细胞产生的二氧化碳和废物。心脏接收低氧血液,然后血液通过肺部进行氧合。这种富含氧气的血液再次进入心脏,然后被输送到身体。心脏还有许多起搏细胞来决定血流量。每个起搏细胞都可以成为“乐队领袖”,其余细胞将跟随该细胞。然而,当许多细胞成为乐队领袖时,它们就会失去节奏,心跳变得不规律,这通常是患者担心的问题。当进行心脏移植时,医生只有 4-6 小时的短暂时间将切除的心脏重新植入接受器,否则心脏将无法使用。每天有 22 名美国人死于等待心脏移植。
3.4.1.1.1 风车预制件结构。风车预制件的结构应与图 8-2-661 所示类似,但尺寸可能有所不同。每个风车应为一块连续的、完整的织物。为了便于成型预制件,风车可在风车 Cf311kr 的 2 1/2 英寸范围内切割,在任何方向上留下至少 5 英寸宽的未切割区域。每个风车上的腿不得超过八个,且尺寸大致相等。除了最内层或最外层预制件层之外,最多两个风车可以通过使用两个半风车连接在一起形成,最小 3 英寸乘 5 英寸的矩形,该矩形与风车所用的材料相同。5 英寸的尺寸应居中并与两个半风车的对接接头平行。这些分段风车层可位于预制件铺层内的任何位置。风车预制件应使用类似于图 8-2-661 的三个冠层组装,以便壳体的任何横截面积上织物层不少于 19 层。风车预制件应相互叠加,以使每层的间隙与所有其他层的间隙相抵消。当 16 个风车预制件正确成型并相互叠加时,可以使用它们获得所需的 19 层织物。风车预制件中的间隙宽度不得超过 3/32 英寸。不得有宽度超过 1/2 英寸的褶皱、皱纹或折痕。长度小于 1/2 英寸的任何褶皱、皱纹或折痕都应平滑。
摘要 陡坡上的下降风非常常见,但对其了解或模拟甚少。本研究重点研究陡峭的高山斜坡上方的下降风急流。我们评估了湍流动能 (TKE) 和雷诺剪应力预算方程中的浮力项。我们特别关注斜率和沿斜率湍流显热通量对这些项的贡献。在最大风速高度以下和以上的四个测量水平可以分析沿垂直剖面的浮力效应如下:(i) 如在稳定条件下预期的那样,浮力往往会破坏 TKE 和最大风速高度 zj 以下急流内层区域的湍流动量通量;(ii) 结果还表明,浮力有助于在急流外层剪切区域(远高于 zj )产生 TKE,而在同一区域观察到湍流动量通量的消耗; (iii) 在最大风速附近机械剪切产生微弱的区域,浮力往往会破坏 TKE,而我们的结果表明,浮力往往会增加动量通量。本研究还提供了一个分析条件,用于确定由于浮力而产生的湍流动量通量与斜坡角度之间的极限,类似于已经为 TKE 提出的条件。我们重新引入了应力理查森数,它相当于雷诺剪切应力预算的通量理查森数。我们指出,通量理查森数和应力理查森数是表征除最大风速高度附近区域以外的下降气流的互补稳定性参数。
降低负/正比(N/P比)的比率对于增加LI金属电池的能量密度(LMB)至关重要。通常,稳定的LI沉积具有高库仑效率(CE),可以通过基于醚的电解质轻松实现,但是低氧化稳定性限制了其在具有高压阴极的电池中的应用。在此处,我们在固体电解质相(SEI)(SEI)上进行了低温电子显微镜(冷冻-ee),深入的X射线光电态(XPS)和原子力显微镜(XPS)和原子力显微镜(AFM),该层以碳酸盐和醚电解液为基于碳酸盐的电解质和电子电气的良好的碳酸电解质和良好的SEI层的特征,从电解质组成。结果表明,SEI层中的有机成分决定了LMB的CE。进一步的理论计算表明,具有LI的碳酸盐分子具有高反应性的性质,导致有机丰富的SEI层具有低弹性模量。根据这些见解,我们通过调整电解质组成来提出碳酸盐电解质中晚期SEI层的设计方法。设计的SEI表现出具有密度无机内层的多层结构。因此,组装了一个4 V的全电池,并传递了760 WH/kg的高能量密度(基于阴极和阳极的重量计算),其长周期寿命为200个碳酸盐电解质的循环寿命为200个周期。
