信息的量子处理,信息的量子处理是一个迅速发展的Ricerclio的领域,它包含许多学科:通信,计算,理论和信息技术,光学,光学,纳米技术,计量学。这个领域,在世界各地众多研究小组都活跃,对整个信息技术领域具有革命性的影响潜力。人类为日常生活所做的所有设备和技术过程都基于身体影响,从建造第一个石材工具到基因工程的最新应用。随着20世纪第三十年末,有一种新的物理学诞生了,以解释微观世界要离开的现象;发生了一场真正的量子革命,它通过通过量子力学定律来对微观世界的行为进行建模,改变了科学的内层。仅在近年来,我们才开始指量子世界的现象来创建对人有用的设备:通常是信息处理的设备。实际上,众所周知,量子现象比物理类别所描述的量子现象更丰富,因为通过借鉴它们,可以创建一种可以解决orier(经典)技术无法解决问题的技术。在Tec-NC的历史中,实现越来越强大的计算工具的最大冲动是由于解决了通信世界的问题而产生的。我们现在处于第二次数量革命的中间,该革命利用了在第一革命中出现的自然定律,以创建新的工程和新的量子技术,该技术将允许设计,控制和工程师的量子设备来处理信息。The final objectives are the creation of an inviolable encryption by law of nature, the development of a new metrology with a higher accuracy of various orders of magnitude compared to classical metrology and the concrete and industrial interest realization of a "quantum calculation" enlargedly capable of solving, in fractions of second, calculation problems whose solution with the most powerful calculators required- In principle, a number of years with dozens of zeros would be made.因此,即使在量子字段中,对通信中安全问题的搜索也可以为产生完善的计算技术的能力提供毫不奇怪。在加密字段中可以使用第一个具体应用。
目的。我们为 X 射线照射吸积盘的宽带光谱能量分布 (SED) 开发了一种新的物理模型,该模型考虑了吸积盘和 X 射线冕的相互作用,包括由中心黑洞 (BH) 的强引力对光传播和光子能量从盘到冕静止坐标系或从冕静止坐标系到观察者的转换引起的所有相对论效应。方法。我们假设一个开普勒光学厚、几何薄的吸积盘和一个灯柱几何中的 X 射线源。X 射线冕发射各向同性的幂律类 X 射线谱,具有高能截止。我们还假设标准盘模型最内层热辐射释放的所有能量都被传输到冕,从而有效冷却该区域的盘。此外,我们还包括由于 X 射线源对圆盘照明的吸收部分进行热化而导致的圆盘加热。还包括由于圆盘照明而导致的 X 射线反射。X 射线光度由从吸积盘(或外部源)提取的能量和散射光子本身带来的能量给出,因此能量平衡得以保持。我们通过迭代过程计算了低能 X 射线截止,充分考虑了圆盘的 X 射线照明与进入日冕的吸积盘光谱之间的相互作用。我们还计算了日冕半径,考虑到康普顿化过程中光子数的守恒。结果。我们详细讨论了模型 SED 及其对系统参数的依赖性。我们表明,圆盘-日冕相互作用对产生的 SED 有深远的影响,它限制了 X 射线光度并改变了 UV 蓝色凸起的形状和正常化。我们还将模型 SED 与目前可用的类似模型预测的 SED 进行比较。我们使用新代码来拟合 NGC 5548 的宽带 SED,这是一个典型的 Seyfert 1 星系。当与之前模型拟合同一源的光学和紫外线时间滞后的结果相结合时,我们推断出黑洞自旋较高、系统倾角中等、吸积率低于爱丁顿的 10%。该源的 X 射线光度可能由圆盘中耗散的 45-70% 的吸积能量支持。新模型名为 KYNSED ,可供公众使用,用于在 XSPEC 光谱分析工具中拟合 AGN SED。结论。 AGN 吸积盘的 X 射线照射可以解释至少一个 AGN(即 NGC 5548)观测到的 UV 和光学时间滞后以及宽带 SED。过去几年中,我们利用多波长、长期监测观测同时研究了这些 AGN 的光学、UV 和 X 射线光谱和时间特性,这将使我们能够研究这些系统中的 X 射线和吸积盘几何形状,并限制其物理参数。
在国家点火设施的实验中,由HDC-ablator非均匀性播种的三维不对称的证据D. T. Casey,1 B. J. Macgowan,1 J. D. Sater,1 A.B. Zylstra,1 O. L. Landen,1 J. Milovich,1 O.A. Hurricane, 1 A. L. Kritcher, 1 M. Hohenberger, 1 K. Baker, 1 S. Le Pape, 1 T. D ö ppner, 1 C. Weber, 1 H. Huang, 2 C. Kong, 2 J. Biener, 1 C. V. Young, 1 S. Haan, 1 R. C. Nora, 1 S. Ross, 1 H. Robey, 1 M. Stadermann, 1 A. Nikroo, 1 D. A. Callahan, 1 R. M. Bionta,1 K. D. Hahn,1 A. S. Moore,1 D. Schlossberg,1 M. Bruhn,1 K. Sequoia,2 M. Rice,2 M. Farrell,2 M. Farrell,2 C. Wild 3 1)Lawrence Livermore国家实验室,美国2)美国2)一般性原子4)停滞时爆炸壳和高面积密度(ߩܴൌ ߩܴൌ)。ρr中的不对称降解壳动能与热点的偶联并减少了该能量的限制。我们提出了第一个证据,即高密度碳实验中的玻璃壳壳厚度(约0.5%)在国家点火设施(NIF)处观察到的3Dρρr不对称的重要原因。这些壳厚度不均匀性显着影响了一些最新的实验,导致ρr不对称的平均ρr和热点速度约为100 km/s的阶段。这项工作揭示了点火实验中重大内爆性降解的起源,并在胶囊厚度计量和对称性上提出了严格的新要求。在国家点火设施(NIF)[1]进行的惯性限制融合(ICF)实验中,氘和trium(dt)燃料的胶囊被浸泡在高密度和温度下,以引发α-颗粒粒子自热和融合燃烧[2,3]。间接驱动ICF概念使用激光来照射高Z圆柱形hohlraum,该圆柱体试图产生几乎均匀的准热,X射线驱动器。X射线驱动器,然后消除胶囊的外层,压缩剩余的烧蚀剂和径向径向向内的低温冷冻DT的内层。此爆炸壳会收敛并压缩气态DT区域形成热点。要达到点火,DT热点必须具有足够高的能量密度,以便足够的时间激发热点自热,并通过密集的DT壳开始燃烧波。该要求可以等效地表示为ܲ߬的条件;其中ܲ是热点压力,能量密度的度量是该能量的限制时间[4,5]。要产生高ܲ߬,内爆必须具有较高的移位内爆速度(ݒݒ),交通壳和热点之间的足够耦合,并且在停滞时高度(或ρr定义为ρr)。壳动能的耦合和该能量的限制都被三维(3D)ρr不对称性降解。使用简化的两活塞系统的最新分析显示[6]在弱α加热的极限中:ఛ
4,5 学生,SRM 科学技术研究所软件工程系摘要 - 在本研究中,我们打算使用深度学习架构来诊断视网膜光学相干断层扫描 (OCT) 图像中的脉络膜新生血管。光学相干断层扫描 (OCT) 图像可用于区分健康眼睛和患有 CNV 疾病的眼睛。研究中使用了深度学习的 DenseNet 和 Vgg16 架构,并更改了两种架构的超参数以正确诊断疾病。检测到疾病后,使用用于处理图像的 Python OpenCV 库将患病的 OCT 图像与背景分割开来以进行感兴趣区域检测。架构实施的结果表明,Vgg16 在检测图像方面比密集网络架构表现出更好的效果,准确率为 97.53%,比密集网络高出约一个百分点。关键词——深度学习、CNN、Vgg16 模型、密集网络模型、视网膜 OCT I 引言光学相干断层扫描是诊断视网膜疾病最广泛使用的诊断成像方法之一。OCT 机器的输出提供 OCT 图像,并提供足够的可视化效果来预测 OCT 胶片上印记的视网膜血管是否存在一些定性和定量变化。视网膜层的增加或减少及其测量值是疾病检测临床试验中的主要评估指标。定期进行视网膜 OCT 扫描有助于早期发现任何与视网膜相关的疾病,并可在年老时避免 [9]。如果在身体中检测到视网膜疾病,许多大脑、眼睛和心血管系统疾病都已出现。通过 OCT 扫描还可以检测到各种其他疾病,患有糖尿病的人患糖尿病视网膜病变的几率很高,而且任何类型的黄斑水肿也可以在视网膜 OCT 图像中看到。本研究主要关注脉络膜新生血管 (CNV),它是发达国家失明的主要原因之一。通俗地说,脉络膜新生血管可以定义为视网膜脉络膜层中额外血管的生成。同一脉络膜层的最内层称为 Brunch 膜 (BM),任何类型的膜损伤都可能导致视网膜脉络膜新生血管,并导致未来失明。近年来,深度学习在医学图像中对患病和未患病图像进行分类的应用有所增加。事实证明,CNN 等深度学习技术在物体检测、图像识别和分割方面也大有用处。因此,这证明了使用深度学习分析 OCT 图像以获取患病图像的重要性。使用深度学习 Vgg16 和 DenseNet 的最新架构对患病图像的预测进行比较。然后分割患病图像以突出显示视网膜层中具有脉络膜新生血管的增强血管和空洞形成 [6]。 * 通讯作者:MS Abirami,abirami.srm@gmail.com
PI3K 抑制可逆转单个细胞而非电场中细胞群的迁移方向 Y Sun, H Yue, C Copos, K Zhu, Y Zhang, Y Sun, X Gao, B Reid, F Lin, M Zhao, A Mogilner 摘要 运动细胞在电场中定向迁移,这一过程称为趋电性。趋电性在伤口愈合、发育、细胞分裂和神经生长中起重要作用。不同类型的细胞在电场中向相反方向迁移,要么向阴极,要么向阳极,同一个细胞可以根据化学条件切换方向。我们之前报告过,单个鱼角质细胞会感知电场并迁移到阴极,而抑制 PI3K 会使单个细胞逆转到阳极。许多生理过程依赖于集体而非个体的细胞迁移,因此我们在此报告了电场中黏性细胞群的定向迁移。任何大小的未抑制细胞群都会移动到阴极,速度随着细胞群大小的增加而降低,方向性增加。令人惊讶的是,大群 PI3K 抑制细胞会向阴极移动,方向与单个细胞向阳极移动的方向相反,而这些小群体不会持续定向。在大群体中,细胞的速度分布不均匀:最快的细胞位于未抑制组的最前面,但位于 PI3K 抑制组的中间和后面。我们的结果与计算模型支持的假设最为一致,即群体内部和边缘的细胞对方向信号的解释不同。也就是说,群体内部的细胞无论其化学状态如何都会被引导到阴极。同时,边缘细胞的行为与单个细胞一样:它们分别在未抑制/PI3K 抑制组中被引导到阴极/阳极。结果,所有细胞都会将未受抑制的群体驱向阴极,但内层细胞和边缘细胞之间的机械拉锯战会将大部分细胞位于内部的大型 PI3K 抑制群体引导至阴极,而小群体则无方向性。运行标题:细胞群体中的双向趋电性意义说明:运动细胞在电场中定向迁移。这种行为——趋电性——在许多生理现象中都很重要。单个鱼角质细胞迁移到阴极,而 PI3K 的抑制会使单个细胞逆转到阳极。未受抑制的细胞群移动到阴极。令人惊讶的是,大量的 PI3K 抑制细胞也会移动到阴极,方向与单个细胞相反。最快的细胞位于未受抑制组的最前面,但在 PI3K 抑制组的中间和后方。我们假设内细胞和边缘细胞对方向信号的解释不同,边缘细胞和内细胞之间的拉锯战指挥着细胞群。这些结果揭示了集体细胞迁移的一般原理。
- Omvoh 是一种白细胞介素 (IL)-23 拮抗剂,可选择性结合 IL-23 的 p19 亚基,用于治疗成人中度至重度活动性溃疡性结肠炎 (UC)。 - UC 和克罗恩病 (CD) 是两种最常见的炎症性肠病 (IBD)。UC 和 CD 都是胃肠道 (GI) 的慢性、复发性、缓解性炎症疾病。UC 仅影响大肠,而 CD 可影响从口腔到肛门的胃肠道任何部分。CD 还可以影响整个肠壁厚度,而 UC 仅影响大肠的最内层。UC 可能表现为腹部不适或排便稀软(包括带血)的症状。UC 或 CD 的病因尚不完全清楚;然而,研究表明,环境因素、遗传和肠道菌群之间的相互作用可能导致 UC 或 CD 的发展。UC 的发病率为每年每 100,000 人 9 至 20 例。其患病率为每年每 100,000 人 156 至 291 例。 - 2019 年美国胃肠病学会指南和 2020 年美国胃肠病学协会指南指出,UC 的治疗管理应以具体诊断、疾病活动评估和疾病预后为指导。治疗选择不仅应基于炎症活动,还应基于疾病预后。可以使用多种药物诱导缓解,包括口服 5-氨基水杨酸 (5-ASA)、皮质类固醇或生物制剂。硫嘌呤,如硫唑嘌呤和巯嘌呤,可用于维持缓解。肿瘤坏死因子 (TNF) 抑制剂英夫利昔单抗、阿达木单抗和戈利木单抗可有效治疗 UC 患者。治疗指南不建议使用一种药物而不是另一种药物,因为没有进行过对这些药物进行头对头比较的试验。维多珠单抗是指南推荐的另一项选择,适用于中度至重度活动性 UC 患者诱导缓解,以及适用于之前抗 TNF 疗法失败的中度至重度活动性 UC 患者诱导缓解。鞘氨醇 1-磷酸 (S1P) 受体调节剂未包含在这些指南中。- Omvoh 的疗效基于 LUCENT 计划的结果,该计划包括两项随机、双盲、安慰剂对照的 III 期临床试验,包括一项 12 周诱导研究 (UC-1) 和一项 40 周维持研究 (UC-2),持续治疗 52 周。 LUCENT 项目中的所有患者均需对一种或多种用于治疗 UC 的糖皮质激素或免疫调节剂反应不足、失去反应或无法服用(即常规治疗失败),或对用于治疗 UC 的生物疗法或 Janus 激酶 (JAK) 抑制剂反应不足、失去反应或无法服用(即生物制剂或托法替尼治疗失败)。在整个试验过程中,患者可以以稳定剂量口服 5-ASA、口服糖皮质激素、硫唑嘌呤、6-巯基嘌呤或甲氨蝶呤。
摘要:FUT8 是一种必需的 α -1,6-岩藻糖基转移酶,可使 N-糖链最内层的 GlcNAc 发生岩藻糖基化,这一过程称为核心岩藻糖基化。在体外,FUT8 表现出对双触角复合 N-糖寡糖 (G0) 的底物偏好,但 N-糖链所附着的底层蛋白质/肽的作用仍不清楚。在这里,我们用一系列 N-糖寡糖、N-糖肽和 Asn 连接的寡糖探索了 FUT8 酶。我们发现底层肽在少甘露糖(低甘露糖)和高甘露糖 N-糖链的岩藻糖基化中发挥作用,但对复合型 N-糖链不起作用。使用饱和转移差异 (STD) NMR 光谱,我们证明 FUT8 可识别 G0 N-糖链的所有糖单元和大多数氨基酸残基 (Asn-X-Thr),这些残基可作为寡糖基转移酶 (OST) 的识别序列。在存在 GDP 的情况下观察到最大的 STD 信号,这表明 FUT8 必须先与 GDP-β-L-岩藻糖 (GDP-Fuc) 结合才能最佳地识别 N-糖链。我们利用 CHO 细胞的糖基化能力基因工程来评估 FUT8 在具有一组特征明确的治疗性 N-糖蛋白的细胞中对高甘露糖和复合型 N-糖链的核心岩藻糖基化。这证实了核心岩藻糖基化主要发生在复合型 N-糖链上,尽管显然只发生在选定的糖基位点上。消除细胞中复合型糖基化能力(KO mgat1)表明,当转化为高甘露糖时,具有复合型 N-糖的糖基位点会失去核心岩藻糖基化。然而有趣的是,对于在有效获取四天线 N-糖方面并不常见的促红细胞生成素,在高甘露糖 N-糖上,三个 N-糖基化位点中有两个获得了岩藻糖基化。对几种蛋白质晶体结构的 N-糖基化位点的检查表明,核心岩藻糖基化主要受 N-糖的可及性和性质的影响,而不是受底层肽序列的性质的影响。这些数据进一步阐明了细胞体外和体内不同的 FUT8 受体底物特异性,揭示了促进核心岩藻糖基化的不同机制。关键词:FUT8、核心岩藻糖基化、N-糖基化、STD NMR、酶动力学、高甘露糖N-聚糖、复合N-聚糖、寡甘露糖型N-聚糖■ 引言
- Omvoh 是一种白细胞介素 (IL)-23 拮抗剂,可选择性结合 IL-23 的 p19 亚基,用于治疗成人中度至重度活动性溃疡性结肠炎 (UC)。 - UC 和克罗恩病 (CD) 是两种最常见的炎症性肠病 (IBD)。UC 和 CD 都是胃肠道 (GI) 的慢性、复发性、缓解性炎症疾病。UC 仅影响大肠,而 CD 可影响从口腔到肛门的胃肠道任何部分。CD 还可以影响整个肠壁厚度,而 UC 仅影响大肠的最内层。UC 可能表现为腹部不适或排便稀软(包括带血)的症状。UC 或 CD 的病因尚不完全清楚;然而,研究表明,环境因素、遗传和肠道菌群之间的相互作用可能导致 UC 或 CD 的发展。UC 的发病率为每年每 100,000 人 9 至 20 例。其患病率为每年每 100,000 人 156 至 291 例。 - 2019 年美国胃肠病学会指南和 2020 年美国胃肠病学协会指南指出,UC 的治疗管理应以具体诊断、疾病活动评估和疾病预后为指导。治疗选择不仅应基于炎症活动,还应基于疾病预后。可以使用多种药物诱导缓解,包括口服 5-氨基水杨酸 (5-ASA)、皮质类固醇或生物制剂。硫嘌呤,如硫唑嘌呤和巯嘌呤,可用于维持缓解。肿瘤坏死因子 (TNF) 抑制剂英夫利昔单抗、阿达木单抗和戈利木单抗可有效治疗 UC 患者。治疗指南不建议使用一种药物而不是另一种药物,因为没有进行过对这些药物进行头对头比较的试验。维多珠单抗是指南推荐的另一个选择,用于中度至重度活动性 UC 患者的诱导缓解,以及用于先前抗 TNF 治疗失败的中度至重度活动性 UC 患者的诱导缓解。鞘氨醇 1-磷酸 (S1P) 受体调节剂未包含在这些指南中。- Omvoh 的疗效基于 LUCENT 计划的结果,该计划包括两项随机、双盲、安慰剂对照的 III 期临床试验,包括一项 12 周诱导研究 (UC-1) 和一项 40 周维持研究 (UC-2),持续治疗 52 周。 LUCENT 项目中的所有患者均需对一种或多种用于治疗 UC 的糖皮质激素或免疫调节剂反应不足、失去反应或无法服用(即常规治疗失败),或对用于治疗 UC 的生物疗法或 Janus 激酶 (JAK) 抑制剂反应不足、失去反应或无法服用(即生物制剂或托法替尼治疗失败)。在整个试验过程中,患者可以接受稳定剂量的口服 5-ASA、口服糖皮质激素、硫唑嘌呤、6-巯基嘌呤或甲氨蝶呤。
