水培系统结合了水产养殖和水培的原理。鱼通过新陈代谢释放废物,通过微生物的代谢活动,废物被转化为植物可利用的氮。水培系统中连接这三种生物的主要元素是水。水是鱼和微生物的生存环境,也是植物的喂养环境,所有这些都受到水质的影响。虽然水产养殖和水培技术对水质有特定的要求,以适应特定的鱼类或植物物种,但在水培系统中,必须制定一个适合鱼类、植物和微生物的折衷方案。这三种生物群体之间错综复杂的关系紧密共存,为彼此提供必要的营养。本报告总结了水培系统中最重要的水质参数。从该系统中每种生物的角度描述了有关 pH、溶解氧、水硬度、电导率、温度和氮循环等水质参数的信息。报告还根据此类系统中最常见的问题描述了水质监测和故障排除。本报告包含对水培系统感兴趣和开始水培系统的企业家和个人的一般信息。
灌溉设施管理人工智能应用促进指导方针 第 2703 号(2020 年 4 月 1 日) 致各地方农业管理局局长、国土交通省北海道地区开发局局长内阁府冲绳综合秘书处长官、农林水产省农村振兴局局长第1号申请关于实施促进灌溉设施管理使用人工智能的项目,请参阅《促进灌溉设施管理人工智能应用项目实施指南》(2020 年 4 月 1 日农林水产部副部长通知第 2702 号)。(以下简称“大纲”) ),以及本指南。第2节 项目内容 1.本指南第1节的“构建有助于节省功能诊断人力的人工智能”是指下列项目。 (1)收集并整理人工智能建设所需的目标设施信息。 (2)利用(1)等信息,建设有助于节省功能诊断劳动力的人工智能。 指南第2.2条“人工智能“利用上述内容进行功能诊断的演示”是指以下内容: (1)为提高构建的人工智能的准确性而需要进行的演示 (2)演示结果摘要 第三节 报告 必须按照附件格式在财政年度 6 月底之前提交符合第五条指导方针的报告项目实施年度结束后,应当提交项目实施情况报告。附则 本通知自2020年4月1日起施行。
预防疾病在水产养殖中至关重要,尽管疫苗提供了保护性免疫,但诸如成本和低疗效之类的挑战持续存在。本研究调查了植物来源的化合物(称为植物基因剂)的潜力,以增强疫苗对欧洲海豆中葡萄症的有效性。Two phytogenic blends, namely PHYTO1 (terpenes) and PHYTO2 (terpenes and flavonoids) were supplemented to a commercial diet to obtain three experimental diets: a non-supplemented control diet, PHYTO1 (a 200-ppm blend of garlic and Lamiaceae oils with 87.5 mg kg − 1 terpenes), and PHYTO2 (一种1000 ppm的混合物,含有柑橘类水果,星形科和lamiaceae油,配以57 mg kg -1萜烯和55 mg kg -1类黄酮)。在通过浴场接种疫苗后,将欧洲少年的海豆分成几组,并喂三种饮食中的一种30天。在此喂养期后,将鱼类麻醉并用单一剂量的疫苗通过Jection中的疫苗加强。他们继续将各自的饮食喂养30天。在第60天,在启动疫苗接种后,通过腹膜内注射将鱼类用颤音的a anguillarum挑战。在每次疫苗接种后在不同时间点测量各种参数,包括总重量,血浆皮质醇和葡萄糖水平,血清免疫球蛋白M(IGM)滴度,白细胞的抗氧化能力以及几种抗氧化剂和免疫降低基因的表达。结果表明,与对照组相比,用植物基补充剂喂养的鱼的体重没有差异。然而,它们表现出较低的血浆皮质醇和葡萄糖水平,增加IgM滴度以及增强的抗氧化剂保护和头肾leuco细胞的抗氧化能力。此外,每次疫苗接种后,植物基因在g和头部肾脏中上调了几个免疫相关基因。值得注意的是,富含类黄酮和萜烯的Phyto2通过减轻疫苗相关的应激,同时改善抗氧化剂保护并调节疫苗诱导的免疫反应,对增强鱼的阳性作用更为明显。疫苗接种的这种协同作用与植物学结合引入了新的途径,以增强水产养殖中的鱼类健康。
图 1. 养殖鲶鱼(a)、野生粉红鲑(b)和野生红鲑(c)研究地点地图。 ........................................................................................................................... 3 图 2. 养殖鲶鱼(a)、野生粉红鲑(b)和野生红鲑(c)在海产品生产和加工中使用的直接能源资源百分比。按燃料来源分类的电力。 ........................................................................................................... 12 图 3. 阿拉巴马州和密西西比州养殖鲶鱼在孵化场(a)、养成(b)和加工(c)阶段使用的直接能源资源百分比。 ........................................................................... 13 图 4. 替代能源供需情景及其对美国东南部电力部门发电和二氧化碳排放的影响 电力(a)和区域二氧化碳排放(b)的区域发电资源组合。 ........................................................................... 19 图 5. 当前和未来情景及其对养殖鲶鱼的可再生直接能源百分比(绿色)的影响。在阿拉巴马州和密西西比州。.............................................................. 24
基于基因组的技术来操纵基因组的结构和功能,并确定对经济上重要物种的遗传修饰的感兴趣基因。基因组编辑技术也已设计用于对水产养殖物种的基因操纵,以提高生产和质量,并以最低的投资成本。DNA标记技术是使用最广泛的基因组技术。DNA指纹用于构建物理图,而遗传图是基于减数分裂重组的。BAC指纹识别是用于物理映射的常用方法。下一代测序师彻底改变了科学,并允许整个基因组测序。QTL映射使识别负责特定性状的基因成为可能。政府的参与和对水产主义者的更好培训非常需要增强基于基因组技术的实际含义。
1976 年《国家科学技术政策、组织和优先事项法案》设立了科学技术政策办公室 (OSTP),为总统及总统行政办公室内的其他人员提供经济、国家安全、国土安全、卫生、外交关系、环境、资源的技术回收和利用等科学、工程和技术方面的建议。OSTP 领导跨部门科学技术政策协调工作,协助管理和预算办公室每年审查和分析联邦预算中的研发,并作为总统在联邦政府主要政策、计划和项目方面的科学技术分析和判断的来源。更多信息请访问 http://www.whitehouse.gov/ostp。
虽然已经在编译本文档中使用了护理,但针对任何特定目的的准确性,使用或应用本文档中包含的任何信息的准确性或适用性,初级行业部并未提供任何预测,保证或保证。在法律允许的全部范围内,初级行业或其任何雇员的部门不得承担任何费用(包括法律费用),索赔,责任,损失,损失,伤害之类的责任,这些费用可能会受到任何直接或在本文档中所包含的任何信息依赖的直接或间接结果。
图1。Yaque del Norte的位置(上)和多米尼加共和国内的Santo Domingo(下) ������农业研磨 ������农业研耗6图2。水基金内的不同类型的干预措施。描述农林业对社区和自然的不同利益的描述 - ������农业研耗 ������������������������������������������������������������������������� 10图4。位于圣多明哥的样品图的空间分布位于Yaque del Norte的样品图的空间分布。从a)a)多米尼加共和国的弗雷尔手册和b)修改图设计的设计图设计的设计,并带有三个用于数据收集的子图。比较2017年和2023年在Yaque del Norte,Nizao,Haina和Ozama流域的比较 ������农业研磨 �������农业研耗17图8。在分水岭的不同类型的干预措施中的地上碳库存估计 ������农业研磨 �������农业研耗19图9。从Google Earth Pro(a)的卫星图像的分辨率与无人机的图像(b)型号Mavic 3多光谱的图像之间存在差异。从Google Earth Pro(a)的卫星图像的分辨率与无人机的图像(b)型号Mavic 3多光谱的图像之间存在差异。