精子发生是一个复杂且严格调节的过程,其中包括精子的增殖,精子分化为精子细胞,生产精子的减数分裂分裂,圆形精子成熟,精子的成熟以及高度专业的成熟精子的精子释放以及释放。这些事件中的任何一个异常都可能导致影响生育能力的精子发生障碍。精子发生障碍可能是由遗传和非遗传因素引起的,其中遗传因素占15%至30%,非遗传学占70% - 85%(O'Flynn O'Brien等,2010; Neto等,2016)。值得注意的是,作为非遗传学的环境因素对于精子发生很重要,因为男性生殖系统,尤其是精子发生似乎对环境危害特别敏感(Vecoli等,2016)。本研究主题包括七个原始文章和一项迷你审查,以增强和扩展我们对这些因素和机制的了解。精子干细胞(SSC)是最原始的生殖细胞,通过自我更新和连续分化为精子细胞,在睾丸中产生精子(Kubota and Brinster,2018),它们通过自我更新和连续分化来维持精子发生。Wu等人的研究。发现GPX3调节人类SSC的增殖和凋亡。作者表明,GPX3在人类SSC中高度表达,其敲低抑制了细胞增殖。此外,GPX3与CXCL10相互作用,并且它们的敲低表型在人类SSC系列中是一致的。结果表明GPX3和CXCL10对于SSC自我更新至关重要。有一些关于外部环境因素对SSC自我更新和分化的影响的研究。先前的研究表明,缺氧对SSC的增殖有益(Morimoto等,2021)。在此研究主题中,Gille等人。研究了缺氧如何影响SSC的增殖和分化。作者证明,当O2张力≤1%时,SSC显示出轻微的分化偏置和增殖的减少,这与Morimoto等人的结果一致。(2021)。减数分裂过程中发生了几个重要事件,包括DNA复制,染色质冷凝,DSB形成和DSB修复。这些事件不是减数分裂的独家,并且发生在体细胞周期中,并且已证明核肌动蛋白与这些事件有关。但是,没有研究来阐明核肌动蛋白和减数分裂之间的关系。在此研究主题中,Petrusová等。提供了一个迷你审查,以阐明核肌动蛋白在预言I
卵骨是一组多样的孢子形成生物,包括数百种臭名昭著的病原体。其中几个在全球隔离名单上,严格受国家和国际法律的监管,以防止其传播(Rossmann等人。,2021)。宿主包括主要的栽培鱼类和植物物种,以及天然生态系统中的许多动物和植物物种(Cao等人,2012年; Fern Andez-Ben Eitez等。,2008年; Kamoun等。,2015年; van den Berg等。,2013年)。卵形构成了一种分类学不同的和大的真核微生物,它与真菌具有某些生理和形态学特征(例如,菌丝的形成和不同的目的孢子类型),但在系统源上是与Heterokont Algae(Baldauf等人(Baldauf等,2000; latijnhouers et and; <,2003)。卵菌和真菌可以通过只有卵菌具有的几种生化和细胞学特征来区分:a)纤维素是其菌丝壁的主要微纤维成分; b)含有磷酸化的B - (1,3) - 米麦葡萄糖的细胞质致密体/纤维打印液泡; c)在配子形成之前的减数分裂的二倍体thalli; d)线粒体带有肾小管crista;最终e)A -ε-二氨基二酰胺酸赖氨酸合成途径(Beakes等,2012年)。在其系统发育多样性中反映了卵形壮成长的大量环境条件和宿主。,2017年)。,2012年; de Bruijn等。,2012年; Fabro等。,2011年)。在过去的几十年中,宿主的卵形相互作用研究结合了基因组学和转录组学对卵菌如何感染其宿主有了充分的了解(Burra等人。意识到许多相互作用的分子的作用对于针对性的管理策略而言至关重要。已经确定,卵蛋白分泌了一系列效应子蛋白,可修饰宿主的免疫系统以促进感染(Bozkurt等人然而,尚未在感染过程中由不同的卵菌病原体产生的大量分子。用于对这些体内的功能分析,以基因修改卵菌的技术,例如RNAi(Saraiva等,2014; Whisson等人,2005年),稳定的转换(Judelson等人。,1993)或CRISPR/CAS(Fang and Tyler,2016年)至关重要。与真菌相比,卵形的分子技术的发展速度较慢,并且与真菌相比,目前仅限于相对较少的物种,并且效率低。由于卵菌中的异质性,需要针对每个物种以及在物种中优化每个菌株的转移方案。因此是
2纽约大学化学系,纽约,纽约10003,美国 *通讯作者。电子邮件:bw@tsinghua.edu.cn(B.W.); ned.seeman@nyu.edu(n.c.s.)。抽象的分支DNA基序是所有合成DNA纳米结构的基本结构元素。但是,分支方向的精确控制仍然是进一步增强整体结构秩序的关键挑战。在这项研究中,我们使用两种策略来控制分支方向。第一个基于固定的霍利迪连接,该连接在分支点上采用特定的核苷酸序列,以决定其方向。第二个策略是使用角度构造支柱在分支点上使用柔性垫片固定分支方向。我们还证明,可以通过规范的Watson-Crick碱基配对或非典型的核酶相互作用(例如I-MoTIF和G-Quadruplex)动态地实现分支方向控制。具有从化学环境的精确角度控制和反馈,这些结果将使新型的DNA纳米力学传感设备和精确有序的三维体系结构。在过去的四十年中,随着DNA纳米技术的快速发展,多功能的DNA纳米结构具有越来越增强的复杂性[1] [1]。作为分支结构基序在DNA纳米结构中无处不在,对螺旋分支的精确角度控制是关键挑战之一。相比之下,几何控制在很大程度上避开了DNA网络设计。对这些方案的拓扑控制已在很大程度上通过序列设计,螺旋时期和连接连通性的处方[2]阐明。Angle and lattice morphology is generally observed to be an emergent property of topological self-assembly—indeed the tensegrity triangle, a hallmark three-dimensional (3D) DNA lattice [3] , has three attainable internal angles, 101 º, 111 º, and 117 º, which is an apparent result of lattice stress by changing the edge length in otherwise topologically-similar structures.考虑到这一点,在现场中,获得更高的结构顺序(包括拓扑和几何特性)仍然是一个关键的挑战,可以作为实现设计师纳米材料功能的更雄心勃勃的目标的基础(例如酶促活动,刚性晶体支架,固定的晶体支架,纳米粒子阵列等)。类似于减数分裂的移动霍利迪交界处的固定的四臂连接是DNA纳米技术中最早的结构图案[2A,4]。它不仅在由无脚手架的DNA“乐高”方法构建的纳米结构中广泛使用[5],而且还使用脚手架的DNA折纸方法在不同的结构中呈现[6]。已证明分支方向由分支点序列[7]和交叉类型[8]定义,这表明了精确几何控制的机会。这种合成性指出了具有精确和动态原子布置的高阶DNA纳米结构的可行性。
植物的有性生殖是一个复杂且受到严格调控的过程,可产生新一代的散播体:有性种子。传统上,在创造新作物品种的过程中,有性生殖被用来分离或选择性地组装所需的基因和性状。然而,有性的利用也给植物育种带来了限制,包括种子成本高昂且方法耗时。在植物育种过程中,可以通过依次利用有性和无融合生殖来缓解大多数这些限制。无融合生殖是一种协同机制的结果,该机制利用性机制并以协调胚珠发育步骤的方式发挥作用,从而产生无性(克隆)种子。有性发育的改变涉及减数分裂、配子发生以及胚胎和胚乳形成中广泛表征的功能和解剖变化。无融合生殖植物的胚珠跳过减数分裂,形成未减数的雌配子体,其卵细胞发育成孤雌生殖胚胎,中央细胞可能与精子融合,也可能不融合,形成种子胚乳。因此,功能性无融合生殖至少涉及三个组成部分,即无融合生殖 + 孤雌生殖 + 胚乳发育,这些组成部分是从有性生殖改良而来的,必须在分子水平上进行协调,才能完成发育步骤并形成克隆种子。尽管最近在发现与无融合生殖样表型和克隆种子形成相关的特定基因方面取得了进展,但无融合生殖的分子基础和调控网络仍然未知。这是目前无融合生殖育种局限性的核心问题。本期特刊汇集了 12 篇围绕无融合生殖分子基础的不同主题的出版物,展示了最近在理解该性状的遗传调控方面取得的发现和进展,并讨论了无融合生殖的可能起源及其在植物中商业化应用的其他挑战。由于无融合生殖是一种基于有性生殖功能获得或丧失突变的现象的理论仍未得到解决,Barcaccia 等人 [ 1 ] 重新评估了被子植物无融合生殖的进化起源及其替代发育途径,并提出了系统发育和遗传证据,支持无融合生殖是从有性生殖进化而来的,是由于有性发育中关键参与者的分子破坏而导致的。此外,Schmidt [ 2 ] 概述了高等植物无融合生殖的分子方面,并清楚地解释了无融合生殖发育所涉及的调控复杂性,强调了 DNA 和 RNA 结合蛋白以及非编码 RNA 在通过表观遗传调控机制激活和抑制发育程序中的积极作用。同样,Ortiz 等人 [ 3 ] 在以 Paspalum spp. 为例的研究中总结了有关无融合生殖的大量信息。并详细介绍了该属无融合生殖发育的关键方面和所使用的各种遗传分析,包括基因组位点的分子表征、三个生殖候选基因( ORC3 、 QGJ 和 TGS1 )的功能表征以及进一步基于基因组的研究路线图。从不同的植物物种中获得了有关无融合生殖的进一步分子细节。Mateo de Arias 等人 [ 4 ] 使用遗传和细胞胚胎学分析结合应激处理对五个物种进行了研究,以提供大量证据支持多态性