诸如MOSFET,光电探测器,光伏细胞之类的设备的性能受到接口质量的强烈影响,尤其是介电和硅之间。已知通过高介电常数Diélectrics(High-k)对IF的钝化可以改善这些接口的电性能。在用于表征界面质量的方法中,第二次谐波(SHG)的产生是一种基于非线性光学器件的有希望的敏感和非破坏性技术。在偶极近似中,中心分析材料中的SHG响应(例如Si,Al 2 O 3,Sio 2等)为零。因此,SHG响应主要包含与界面相关的信息,其中对称性被打破。此外,在界面处的电场(E DC)存在下,信号得到加固。该现象称为efish(电场诱导的SHG)。由于电界面场与氧化物(Q OX)和/或界面状态(d IT)中的固定载荷相关联,因此SHG技术对这些电参数敏感。本论文的目的是校准SHG响应,以测量与电介质中固定载荷相关的电场。从SHG实验数据中提取电气信息需要考虑光学现象的影响(吸收,干扰等。),这得益于对所研究结构的第二个谐波的响应进行建模/模拟。我们的仿真程序基于我们为多层人士改编的文献的理论模型。实验是在Si(100)上的几层Al 2 O 3上进行的,在可变条件下沉积并且界面质量非常不同。互补的电气技术,例如Corona负载(COCOS)和容量张力测量(C-V)的表征,使得访问样品的电场并完成SHG结果以进行校准。实验和模拟证明了Si介电的单个校准的可能性还讨论了与多层(绝缘体上的硅)等多层表征相关的一些研究元素,特别是对各个接口处存在的层厚度或电场厚度的SHG响应的影响。
Biotite是一种属于三十二十体云母基团的铁矿,是一种自然丰富的分层材料(LM),具有有吸引力的电子特性,用于在纳米式设备中应用。Biotite在环境条件下以不可降解的LM脱颖而出,具有高质量的基础裂解,这是Van der Waals异质结构(VDWH)应用的重要优势。在这项工作中,我们将Biotite的微型机械剥落向下呈现给单层(1LS),从而产生具有较大面积和原子平坦表面的超薄薄片。为了识别和表征矿物,我们使用能量分散性光谱映射对生物岩进行了多元分析。此外,还采用同步型红外纳米光谱镜以几层形式探测其振动签名,对层数具有敏感性。我们还观察到及时(长达12个月)的良好形态和结构稳定性,并且在超薄生物岩片中热退火过程后其物理特性没有重要变化。导电原子力显微镜评估了其电容量,揭示了大约1 V/nm的电故障强度。最后,我们探讨了将Biotite用作底物的使用,并将LM封装在VDWH应用中。我们在低温下进行了光学和磁光测量。我们发现,超薄生物岩片可作为1L-摩尔2的良好底物,可与六边形的硝酸硼片相当,但它引起了1L-摩尔斯2 G因子值的少量变化,这很可能是由于其晶体结构上的天然杂质。此外,我们的结果表明,生物片片是保护敏感LMS(例如黑磷)免受降解的有用系统,可在环境空气中降解多达60天。我们的研究将Biotite作为一种有希望的,具有成本效益的LM,用于进步未来的超薄纳米技术。
摘要 EFESTO 项目由欧盟 H2020 计划资助。该项目旨在提高欧洲设计再入飞行器充气隔热罩的能力。充气隔热罩技术能够扩大太空应用范围,因为它为大气下降提供了有效的防热和减速能力,同时具有相对的质量和体积效率,这对太空任务来说是一项重要资产。在初始研究阶段,选择将充气隔热罩用于火星探索和用于运载火箭上级再入地球以供日后重复使用,作为 HIAD 技术的潜在应用。这两个应用案例是为了在现实条件下展示该技术的性能,并为在实际应用中训练的充气隔热罩设计提供代表性的研究框架。在项目的第一部分,工作重点是两个研究案例的系统设计。这项工作产生了一种充气隔热罩设计,与初始设计相比,其几何复杂性降低,并且可扩展用于其他应用。在为连续的项目阶段选择一个参考定义之前,对柔性热防护系统 (F-TPS) 的几层材料进行了比较。在此阶段之后进行了密集的测试活动。部分测试用于使用联盟内可用的等离子风洞测试基础设施验证 F-TPS 在相关气动热环境下的热性能。此外,还制造了一个高保真充气结构地面演示器。该演示器用于巩固充气系统的机械特性。此测试活动提供了用于数值互相关和实验数值重建的数据。最终,计算折叠分析完成了此项目阶段的数值活动。项目的最后阶段致力于技术的在轨演示任务的初步设计以及技术开发路线图的设计。这个潜在的未来在轨演示器 (IOD) 将在相关环境中发展时提供有关系统性能的知识。这将为开发的充气式隔热罩技术提供飞行验证和确认。本文概述了该项目,重点介绍了即将在未来几周内完成的 EFESTO 项目的系统方面。
自从在 Cr 2 Ge 2 Te 6 [1] 和 CrI 3 [2] 的单层和双层中发现长程磁序以来,许多单层或几层厚度的(反)铁磁范德华材料已被发现。由于层间和层内交换以及磁各向异性的相互作用导致自旋纹理丰富,它们是自旋电子学的理想平台。许多反铁磁范德华材料在低温下是电绝缘的,这意味着不存在自由载流子引起的磁化衰减。因此,它们对于研究磁序的集体激发,即自旋波及其量子,磁振子 [3, 4] 具有吸引力。传统磁体中的磁振子输运已得到广泛研究,例如,通过自旋泵浦 [5]、自旋塞贝克效应 (SSE) [6] 和电磁振子自旋注入/检测 [7]。反铁磁体赤铁矿 [8]、氧化镍 [9] 和 YFeO 3 [10] 中的长距离磁振子传输已被证实。低阻尼亚铁磁钇铁石榴石 (YIG) 超薄膜是高效磁振子传输的首选材料,它以强烈增强的磁振子电导率形式显示出二维 (2D) 相对于三维 (3D) 传输的有益效应 [11]。温度梯度驱动的磁振子自旋输运 (SSE) [12] 已被报道存在于铁磁和反铁磁范德华材料中 [13, 14]。然而,局部和非局部 SSE 仅提供有关磁振子传输特性的复杂信息。热磁振子电流是由整个样品中的热梯度产生的,因此很难区分磁振子弛豫长度和磁振子自旋电导率 [7, 11]。CrCl 3 [15] 的反铁磁共振揭示了声学和光学磁振子模式的存在,但并未解决它们在自旋输运中的作用。因此,为了评估范德华磁体在自旋电子学应用中的潜力,我们必须研究由微波或我们将在此处展示的电注入局部产生的磁振子的传播。
过去二十年来目睹了对Van-der-Waals(VDW)材料的研究爆炸,这是一类广泛的固体,在该固体中,平面晶体板由VDW部队粘合在一起。通常,这些材料只能将其稀释为几个原子层,甚至可以将其变成单个原子纸,从而意识到其传统散装形式的二维(2D)变体。由于在2000年代初期的单层(1L)的第一次驱动器以来,已经将各种VDW材料隔离并以2D极限进行了隔离和研究,包括金属,宽间隙绝缘子,半导体,半导体,半金属,超级导管,磁性材料,磁性材料,以及更多。[1]中,在这些半金属中,例如石墨烯和2D半导管,通常由VI组VI过渡金属二甲硅烷基(TMDC)代表,在基本凝聚的物理学以及在电子,电子,光电电子技术中以及在基本凝聚的物理学方面创造了令人兴奋的新机会。[2-4]由于光学相互作用和频段结构发生了巨大变化,在从几层到1L极限的过渡中可能发生,因此在2D Light-Matter相互作用和超级超平均光电设备中证明了2D半导体和半米的独特机会。这值得探索其光诱导的物理学,从而导致新型量子现象。2D材料的关键特性之一是增强的电子 - 电子库仑相互作用,其介电筛选和低维度引起。这些相互作用不仅强烈修改平衡频带结构,而且更改了(照片)激发的带构结构。[5],例如,强烈结合的激子[6](由绑定的电子和孔组成),即使在室温下,也要赋予2D半导体的光学响应。这些摘录显示出各种各样的物种,具有不同的自旋,[7] Monma,[8]和电荷[9]影响其光 - 肌电相互作用的频谱,动力学和应用。2D材料的另一个属性是它们能够将其堆放到其他2D材料和基板上,几乎没有约束。[10]这些结构中的层间相互作用促进了一种独特的手段,用于设计异质结构属性和功能,而不是组成材料的材料。[11,12]这些属性包括动量依赖性层
多羟基甲酸酯,称为非异氰酸酯聚氨酯(NIPU),是通过胺固化的多膜循环碳酸盐来制造的,可从多种合成和生物基于生物的环氧树脂和二氧化合物中通过碳二氧化物的化学固定固定。同氰酸酯单体对水分敏感高度敏感,而NIPU加工可耐受性和各种官能团。这对开发高级功能填充剂非常有益,因为不需要特殊的干燥程序或其他预处理。在新兴纳米填料中,石墨烯由于其出色的机械,热和电性能而起着重要作用。作为2D碳聚合物,由缺陷 - 游离SP 2-杂交碳单层组成,石墨烯具有1 TPA的非凡刚度,[6] 5000 W m-1 K-1 K-1,[7]的热导率为5000 W m-1 K-1,[7] [7] 6000 S Cm-1 [8]和2600 MOxipe的电导率。[9]因此,石墨烯对具有出色的机械,热和电性能的多功能聚合物纳米材料的发展具有巨大的希望。[10]与石墨烯相关的纳米材料,例如多壁碳纳米管,石墨氧化物(GO)或热还原的石墨氧化物(TRGO)(TRGO),以改善各种多种聚生物材料的机械和电气性能,包括多种聚生物材料[11,12,12]和Polyure-ysess和Polyure-ysess和Polyure-ysess和Polyure-ysess和Polyure-yses和Polyure-yses。[13,14]其他突出的例子是针对传感器应用定制的石墨烯/弹性体纳米复合材料。这种方法已由Novoselov等人开创。[15–19]尽管边缘量的纳米填料可以提供重大的财产改进,但纳入较高量的基于差异的填充剂通常会在处理和成本效率方面构成问题,从而限制其在轻量级构造中的应用。为了降低成本并改善加工,已经进行了几次尝试,以开发工业可行的合成路线,以定制与石墨烯相关的材料作为功能填充剂。几种自上而下的技术采用石墨作为丰富的市售中间体,用于去角质几层或单层石墨烯。使用其苏格兰胶带技术从石墨表面剥离单层石墨烯。[20]通常,从石墨中去角质需要很高的剪切力才能克服堆积在石墨>的石墨烯层之间的范德华吸引力
目的:在本文中,我们将持续探索脑机接口 (BCI) 的脑信号类型,并探索脑信号分析深度学习的相关概念。我们讨论在检测阿尔茨海默病 (AD)、脑瘤等两种脑部疾病方面的最新机器学习方法。此外,还简要概述了用于表征脑部疾病的各种标记提取技术。项目工作,由图像共振信息支持的肿瘤分类自动化工具。它由 ResNet Squeeze 的各种卷积神经网络 (CNN) 样本提供。目标:本文旨在使用深度学习概念分析脑部疾病的分类和预测。深度学习是计算机科学中的一组机器学习,其网络能够从非结构化或未标记的数据中进行无人值守的学习。也称为深度神经学习,是模仿人类大脑处理数据以用于物体检测、语音识别、语言翻译和呼叫的 AI 操作。方法论:为了通过测量输入句子中的语义来测试结果,可以创建具有相同值的嵌入向量。在这种情况下,使用具有不同含义的句子。由于很难收集大量标记数据,因此它模拟了其他句子中的信号。随着您的进步,使用来自前几层的共享输出的层来训练更复杂的功能。我们研究了深度学习方法的类型:带有 RNN 的 LSTM 模型、CNN 结果。CNN 是一个多层前馈神经网络。设备权重通过反向传播误差过程更新。记录 d 中时间段 t 的 TF-IDF。与传统的摘要模型不同,前向工程功能基于对所需记录域的理解。此外,该框架与人工缩写有关,然后可以使用人工缩写来推迟手动功能开发和记录标记的影响。结果:我们将跟踪这个 257 个因素的选择作为向量输入分类算法。它是以下形式的集合,包括输入层、卷积层、线性单元 (ReLU) 层、池化层、全耦合层。循环神经网络 (RNN) 是一种神经网络,它定义循环单元之间的连接。这创建了一个允许的内部网络区域。特征选择是一种广泛使用的方法,可以提高分类器的性能。在这里,我们研究了传统美容火灾与基于相关性的个性化选择的影响。原创性:使用带有 ResNet Squeeze 的深度 CNN 进行计算机分类和预测的方法分析脑部疾病。
对于解决地热井中HPHT条件引起的钻井问题的可能性,需要进行热稳定的地热钻泥系统的发展。这是由于高温对HPHT条件下泥流体的降解影响而发生的。挑战在于设计一种可以承受高压,高温(HPHT)条件的合适钻孔液。本研究旨在提供既便宜又环保的新添加。在应用于HPHT钻井环境时,添加剂有可能匹配或超过现有添加剂的性能。几层石墨烯(FLRGO)是通过根据Hummer方法制备的氧化石墨烯获得的。然后,还用两种类型的纳米颗粒装饰了还原的石墨烯表面,以通过简单的溶液混合技术获取两种不同组合物的纳米复合材料。使用氮化硼(BN)纳米颗粒制备了第一个石墨烯纳米复合材料(RGB),其比率不同,以产生三组从1到3。使用氮化钛(TIN)纳米颗粒获得了第二个(RGBT),其百分比不同,以产生六组从1捐赠至6。The prepared reduced graphene oxide along with its nitrides nanocomposites were intensively investigated using several characterization techniques including scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermal gravimetric analysis (TGA).因此,0.2、0.6和1 wt。在高温和压力下(230°C,17000 psi)到(80°C,2000 psi),研究对纳米复合材料均研究了如何影响水基钻孔液的流变学和过滤特性。%用作泥样样品的添加剂,并相对于参考泥浆进行了评估。的结果强调,在温度和压力升高时,带有60%石墨烯的RGBT样品,参考样品塑料粘度,20%硝酸硼和20%氮化钛的含量增强了10%至59%,17%至17%至61%至61%至61%和20%至67%(0.2 wt%),(0.2 wt%),浓度(0.6 wt),(0.6 wt tostive)和(0.6 wt t t t t t t t。同样,产量点分别提高了44%至88%,49%至88%和50%至89%。两种纳米复合材料在HPHT条件下均显着降低了滤液损失。这些发现表明,发达的纳米增强钻孔液可以抵抗高级钻孔操作中遇到的严重条件,并在较高温度下具有更好的热稳定性。
ETMOS 项目旨在通过分子束外延 (MBE) 和脉冲激光沉积 (PLD) 开发电子级过渡金属二硫属化物 (TMD) 的大面积生长。根据最近关于在六方晶体衬底上生长的 MoS2 外延质量的报告和初步结果,我们将推动这些材料在宽带隙 (WBG) 六方半导体 (SiC、GaN、AlN、AlGaN 合金) 和绝缘蓝宝石上的外延层生长。五个合作伙伴在薄膜生长 (CNRS、SAS)、高级特性和模拟 (CNR、HAS、U-Pa)、加工和电子设备原型 (CNR) 方面拥有互补的技能。将在不同衬底 (Si、蓝宝石、SiC、块状 GaN) 上生长 WBG 半导体模板/薄膜,以完全控制起始材料的特性并制备外延就绪表面,从而实现高质量和均匀的 TMD MBE 和 PLD 生长。沉积范围将从单层 (1L) 到几层 (最多 5) MoS2 和 WSe2,并在直径最大为 100 毫米的晶片上控制亚单层厚度。将开发 MBE 或 PLD 期间的 TMD 替代掺杂,重点是 MoS2 的 p+ 掺杂,这对设备应用具有战略意义。除了生长设施外,ETMOS 联盟还拥有整套形态、结构、化学、光学和电扫描探针表征,有助于在每个生长步骤中实现高质量。将通过专门设计的测试设备研究 TMD 的电性能 (掺杂、迁移率、电阻率等) 以及跨 TMD/WBG 异质结的电流传输。实验将通过生长模拟和 WBG 上 TMD 电子能带结构的从头计算来补充。将制定多尺度表征协议,以将我们的外延 TMD 与使用相同或互补沉积方法的其他小组的结果进行对比。最后,将制造利用 TMDs/WBG 异质结特性的器件原型,包括:(i) 基于 p+-MoS2 与 n-GaN 或 n-SiC 原子突变异质结的带间隧穿二极管和晶体管;(ii) MoS2/GaN 和 MoS2/SiC UV 光电二极管;(iii) 具有 Al(Ga)N/GaN 发射极和 1L TMD 基极的热电子晶体管。开发的材料/工艺的目标是在项目结束时达到 TRL=5。由于 ETMOS 合作伙伴与 SiC 和 GaN 领域的领先工业企业(STMicroelectronics、TopGaN、Lumilog)保持着持续合作,因此来自行业的代表将成为 ETMOS 顾问委员会的成员,为工艺与生产环境的兼容性提供指导。我们的 TMDs 生长活动与常用的 CVD 方法高度互补。我们预计与石墨烯旗舰项目第 1 和第 3 部门的团队将产生强大的协同作用,从而促进欧洲在 TMD 和设备应用大面积增长方面的能力。
过渡金属二盐元化(TMDS)的单层表现出许多具有不同结构,对称性和物理特性1-3的晶体相。在二维4中探索这些不同的结构阶段之间的过渡物理学可能会提供一种切换材料特性的方法,这对潜在的应用有影响。由热或化学方法5,6诱导;最近提出,通过静电掺杂对晶体相纯粹的静电控制是一种理论上的可能性,但尚未实现7,8。在这里,我们报告了单层钼二硫代硫醇的六边形和单斜阶段之间静电掺杂驱动的相变的实验证明(Mote 2)。我们发现相变显示了拉曼光谱中的滞后环,并且可以通过增加或降低栅极电压来逆转。我们还将第二谐波生成光谱与极化分辨的拉曼光谱结合在一起,以表明诱导的单斜相保持原始六边形相的晶体取向。此外,这种结构相变于整个样品同时发生。这种结构相变的静电掺杂控制为基于原子薄膜开发相变设备的新可能性开辟了新的可能性。分层TMD中通常研究的晶体形式是最稳定的六边形(2H)相。在这种情况下,如图有趣的是,实验研究报道了另一种分层晶体结构,即单斜(1T')相。1a,每个单层由一层六角形的过渡金属原子组成,并将其夹在两个层的chalcogen原子1之间。与散装形式不同,单层2H TMD成为直接带隙半导体和断裂反转对称性,在布里远区域9,10的角落形成了不等的山谷。这种山谷的自由度,以及在低维度中的强烈激子效应,使该阶段成为二维谷LeTronics和Optoelectronics 11-13的独特平台。在这里,在每个层中,丘脑原子在过渡金属原子周围形成一个八面体配位,沿y轴14的晶格失真(图1b)。与半导体2H相不同,半金属或金属1T'单层TMDS保留反转对称性,预计将表现出非平凡的拓扑状态2,3。2H和1T'相之间过渡的动态控制可以揭示不同晶体结构的竞争,共存和合作,以及不同的物理特性之间的相互作用15。这种控制还导致广泛的设备应用,例如记忆设备,可重新配置的电路和拓扑晶体管在原子上较薄的限制为2,16,17。到目前为止,通过在500°C下的热合成进行了实验报告TMD中的2H到1T'相变(参考5),通过元素取代18和激光照射19。但是,这些相变仅在几层或