对于许多出血演示,将Andexanet Alfa与当前推荐的常规护理2,3进行比较的证据仅限于间接比较器和观察性研究,并具有偏见的风险。Annexa-i代表了脑内出血患者的第一个更高质量的RCT与常规护理相比。Annexa-I表明,在选定的患者中,Andexanet Alfa比通常的护理提供了更好的血液功效(调整后的差异,13.4个百分点; 95%置信区间[CI],4.6至22.2; P = 0.003; p = 0.003)患有患有脑内脑部的患者(Connollal haemorrhages(Connolly,Sharolly,Sharolly,Sharma et arma an ef。<)2024)。在这项研究中,“止血疗效”是一种复合标记(包括计算机断层扫描(CT)变化,临床评估和救援治疗的使用),用作改善患者预后的指标。
乙肝是一种由血液中的病毒引起的感染。它可通过性行为或接触过受感染血液的物品传播,例如剃须刀、牙刷、指甲刀、针头和注射器以及血糖仪。乙肝病毒 (HBV) 可在物体表面存活长达一周。
“光子是电磁能量的最小包,是量子网络中信息的有效载体,”卢说。“每个光子都有多个自由度,如路径、偏振和频率,可以携带量子信息。光子之间的量子连接,即所谓的纠缠,使量子隐形传态等协议成为可能。然而,这种连接对环境条件高度敏感,可能会在传输过程中引入错误。”
[1] Siegmund 等人。通过功能性磁共振成像理解源代码。(2014 年)。[2] Huang 等人。使用 fMRI 和 fNIRS 提取数据结构操作的神经表征。(2019 年)。[3] Peitek 等人。程序理解和代码复杂度指标:一项 fMRI 研究。(2021 年)。[4] Krueger 等人。神经鸿沟:一项关于散文和代码写作的 fMRI 研究。(2020 年)
研究文章 | 系统/电路 睡眠觉醒的脑内动力学:头皮-颅内脑电图联合研究 https://doi.org/10.1523/JNEUROSCI.0617-23.2024 收稿日期:2023 年 4 月 10 日 修订日期:2024 年 2 月 5 日 接受日期:2024 年 2 月 12 日 版权所有 © 2024 作者
颅内脑电图 (iEEG) 和神经生理学的进步使得人们能够以高保真时间和空间分辨率研究以前无法接近的大脑区域。对 iEEG 的研究揭示了丰富的神经代码,这些代码服务于健康的大脑功能,但在疾病状态下会失效。机器学习 (ML) 是一种人工智能,是一种现代工具,可以更好地解码复杂的神经信号并增强对这些数据的解释。迄今为止,许多出版物已将 ML 应用于 iEEG,但临床医生对这些技术及其与神经外科的相关性的认识有限。本研究回顾了 ML 技术在 iEEG 数据中的现有应用,讨论了各种方法的相对优点和局限性,并研究了神经外科临床转化的潜在途径。从 3 个数据库中确定了 107 篇研究人工智能在 iEEG 中的应用的文章。这些文章中的 ML 临床应用分为 4 个领域:i) 癫痫发作分析、ii) 运动任务、iii) 认知评估和 iv) 睡眠分期。审查显示,监督算法在研究中最常用,并且经常利用公开可用的时间序列数据集。我们最后提出了未来工作和潜在临床应用的建议。
脑血流 (CBF) 和脑容量的缓慢振荡最近成为一个热门话题,因为这些缓慢振荡与脑内的脑脊液 (CSF) 运动有关,并可能促进血流过脑间质以清除溶质和有毒代谢物,这一过程称为淋巴流动 (1)。颅内 EEG、MRI 血氧水平依赖性 (BOLD) 信号和 CSF 波 (2) 的耦合缓慢同步振荡似乎共同在驱动 CSF 运动方面发挥着关键作用,尤其是在慢波 (delta 波) 睡眠活动期间。此外,这些类型的振荡发生在与颅内 B 波相同的频率范围内,而 B 波也是 CBF 和颅内压 (ICP) 规律同步波动的结果,其来源不明 (3)。这种关联促使我们分析了之前在 B 波期间进行的 MCA 速度和 ICP 的颅内记录中的其他频率参数和波形特征(3),并将它们与已发表的 MRI CBF 慢波测量结果(2、4-9)进行比较,以确定这些实体之间的相似性。颅内压 B 波最初被描述为以每分钟 0.5 到 2 个周期发生的规则重复 ICP 振荡,其来源已证明难以捉摸,其生理作用尚未确定。Lundberg 在他最初的经典论文中评论说,通过检查 B 波的特征及其与其他生理参数的关系,无法就其起源得出明确的结论(10)。一项关于麻醉猫软脑膜动脉的观察性研究描述了同步的 ICP 波和血管直径波动,其发生频率(每分钟 0.5-2 次)与经典 B 波相似,支持周期性血流和血容量波动可能是 ICP B 波原因的观点,但并未给出任何有关其生理功能的迹象(11)。一些早期关于患者和正常受试者的经颅多普勒 (TCD) 超声记录的报告描述了由于 CBF 变化导致的大脑中动脉 (MCA) 速度波动,其频率范围与 Lundberg B 波相同(12、13)。我们报告了 70% 的正常受试者在休息和躺在担架上 1 小时时,MCA 速度波动的频率范围 (0.5-2 次/分钟) 和形式与 Lundberg B 波相似,并且在同一报告中描述了头部受伤患者的同步 MCA 速度和 ICP 振荡,其频率与 B 波相同 (3)。其他研究人员证实了这些结果,并进一步描述了各种环境下 MCA 流速的节律性振荡,包括头部受伤患者、正常休息志愿者以及睡眠期间 (14-18)。一些研究指出,TCD 测得的 B 波发生的频率范围比 Lundberg 在 ICP 记录中指出的更宽,并且频率比我们小组最初描述的更宽(3),因此建议将 B 波频率范围扩大到每分钟 0.33-3 个周期(0.005-0.05 Hz)(18)。其他研究人员报告称,颅内 B 波的频率高达每分钟 4 个周期(0.067 Hz)(19)。最近发表的关于通过功能性(f)MRI 结合 EEG 测量慢周期性 CBF 振荡的描述
• 中胚层组织 • 多能性 • 遵循自然分裂面 • 被动易位/主动细胞迁移 • 经历细胞分化 • 神经源性病变综合征 • 癌细胞 – 类似的细胞和分子变化
图 2 | 运动任务的 fPACT 和 7 T fMRI 结果。对右侧 FT(a:fMRI,b:左半球无颅骨 fPACT)、左侧 FT(c:fMRI,d:右半球颅骨完整 fPACT)和 TT(e:fMRI — 左图显示大脑左侧,f:左半球无颅骨 fPACT,g:fMRI — 左图显示大脑右侧,h:右半球颅骨完整 fPACT)的功能反应进行了成像。皮质上显示的功能反应(左栏)代表反应的最大振幅投影。功能反应也显示在通过激活的轴向(中间栏)和冠状(右栏)切片上。对于 FT(ad),我们选择相同的轴向和冠状切片显示在所有四张图像中。对于左侧无颅骨侧的 TT(e、f),我们选择彼此相距 5 毫米以内的切片。对于右侧颅骨完整侧的 TT(g、h),我们选择相同的轴向和冠状切片。但这些激活在空间上并不重叠。在每个功能图中,我们显示了以最大 t 值(𝑡𝑚𝑎𝑥)的 70% 为阈值的区域,这些区域列为每个皮质图下方的第一个值。皮质图下方显示了对应于最大 t 值的 70% 的 p 值(一元学生 t 检验)。白色箭头表示 fPACT 中的激活区域。比例尺:2 厘米。