第一章区块链技术概述 1. 人工智能AI,区块链Blockchain,云计算Cloud 和数据科学Data Science。 人工智能:生产力变革。大数据:生产资料变革。区块链:生产关系变革。 2. 可信第三方: 交易验证,交易安全保障,历史记录保存->价格昂贵,交易速 度嘛,欺诈行为。 区块链: 去中心的清算,分布式的记账,离散化的支付。任 何达成一致的无信任双方直接交易,不需要第三方中介。注意:信用破产,绝 对中心化,不透明无监管。 3. 区块链: 用于记录比特币交易账目历史的数据结构,每个区块的基本组成都 由上个区块的散列值、若干条交易及一个调节数等元素构成,矿工通过工作量 证明来维持持续增长、不可篡改的数据信息。区块链又称为分布式账本,是一 种去中心化的分布式数据库。 区块链技术 是在不完全可信的环境中,通过构建 点对点网络,利用链式数据结构来验证与存储数据,借助分布式共识机制来确 定区块链结构,利用密码学的方式保证数据传输和访问的安全,利用由自动化 脚本代码组成的智能合约来编程和操作数据。 4. 体系结构:数据层: 封装了区块链的底层数据存储和加密技术。每个节点存 储的本地区块链副本可以被看成三个级别的分层数据结构:区块链、区块、区 块体。每个级别需要不同的加密功能来保证数据的完整性和真实性。 网络层: 网格网络,权限对等、数据公开,数据分布式、高冗余存储vs 轴辐网络,中央 服务器分配权限,多点备份、中心化管理。 共识层: 能够在决策权高度分散的 去中心化系统中使得各节点高效地针对区块数据的有效性达成共识。出块节点 选举机制和主链共识共同保证了区块链数据的正确性和一致性,从而为分布式 环境中的不可信主体间建立信任关系提供技术支撑。 激励层: 经济因素集成到 区块链技术体系中,包括经济激励的发行机制和分配机制等。公有链:激励遵 守规则参与记账的节点,惩罚不遵守规则的节点,使得节点最大化自身收益的 个体理性行为与保障去中心化的区块链系统的安全和有效性的整体目标相吻合, 整个系统朝着良性循环的方向发展。私有链:不一定激励,参与记账的节点链 外完成博弈,通过强制力或自愿参与记账。 合约层: 封装区块链系统的各类脚 本代码、算法以及由此生成的更为复杂的智能合约。数据、网络和共识三个层 次作为区块链底层“虚拟机”分别承担数据表示和存储、数据传播和数据验证功能, 合约层建立在区块链虚拟机之上的商业逻辑和算法,是实现区块链系统灵活编 程和操作数据的基础。智能合约是一个在计算机系统上,当一定条件被满足的 情况下,可以被自动执行的合约(程序)区块链上的智能合约,一是数据无法 删除、修改,保证了历史的可追溯,作恶成本很高,其作恶行为将被永远记录; 二是去中心化,避免了中心化因素的影响。 应用层: 区块链技术是具有普适性 的底层技术框架,除可以应用于数字加密货币外,在经济、金融和社会系统中 也存在广泛的应用场景。 5. 区块链特征 :去中心,去信任;开放,共识;交易透明,双方匿名;不可篡 改,可追溯。 区块链分类: 公有链: 无官方组织及管理机构,无中心服务器, 参与的节点按照系统规则自由接入网络、不受控制,节点间基于共识机制开展 工作。 联盟链: 由若干机构联合发起,介于公有链和私有链之间,兼具部分去 中心化的特性。 私有链: 建立在某个组织内部,系统的运作规则根据组织要求 设定,修改甚至是读取权限仅限于少数节点,同时仍保留着区块链的真实性和 部分去中心化特征。 无许可区块链: 一种完全去中心化的分布式账本技术,允 许节点自由加入和退出,无需通过中心节点注册、认证和授权,节点地位平等, 共享整个账本。 许可区块链: 存在一个或多个具有较高权限的节点,可以是可 信第三方,也可以是协商制定有关规则,其他节点只有经过相应授权后才可访 问数据,参与维护。 6. 数字货币:区块链1.0 旨在解决交易速度、挖矿公平性、能源消耗、共识方 式以及交易匿名等问题,参照物为比特币(BTC)。区块链2.0 旨在解决数据隐 私、数据存储、区块链治理、高吞吐量、域名解析、合约形式化验证等问题, 参照物为以太坊(ETH)。
预测武器系统的性能很难用数学方程来估计,因为要考虑的变量很多。建模和仿真技术已经提出了可以评估武器系统开发和部署的最佳解决方案。模拟目的是设计模拟系统的决定性因素,但为每个目的开发一个模拟器成本高、不迅速、不灵活。分布式仿真系统通过将现有的模拟器与系统连接起来,允许以经济的输入资源进行大规模模拟,并且可以灵活、快速地重新设计系统以用于其他目的。本研究使用最初为军事模拟设计的 Delta3D 模拟游戏引擎在分布式系统中实现水下战争模拟,由于水下作战受环境情况影响最大,因此模拟系统交换环境数据。本研究采用 SEDRIS 处理环境数据,采用 HLA/RTI 处理分布式系统。
并行和分布式仿真领域出现于 20 世纪 70 年代和 80 年代,由两个截然不同、相互重叠的研究团体发起。一方面,并行离散事件仿真 (PDES) 团体致力于通过利用高性能计算平台来加速离散事件仿真的执行。大约在同一时间范围内,分布式仿真团体从国防团体的研究和开发工作中发展而来,该团体专注于将单独开发的仿真互连起来,这些仿真在通过局域网和广域网互连的计算机上执行。这项研究最初侧重于用于训练目的的仿真,但很快扩展到包括物理设备的分析、测试和评估等领域。虽然 PDES 和分布式仿真之间存在重要差异,但也存在许多共同的问题。在这里,我们非正式地将并行和分布式仿真描述为一个领域,它涵盖了这两个团体在从紧密耦合的并行计算平台到通过广域网连接的松散耦合机器等平台上执行单个仿真程序时出现的问题。
第 9 章:输入/输出................................................................................193 概述................................................................................................193 9.1 时间的双重角色..............................................................................194 9.2 协议..............................................................................................196 9.3 采样和轮询................................................................................198 9.4 中断................................................................................................201 9.5 传感器和执行器....................................................................................203 9.6 物理安装......................................................................................207 要点................................................................................................208 参考书目注释......................................................................................209 复习题和问题................................................................................209
并行和分布式仿真领域出现于 20 世纪 70 年代和 80 年代,由两个截然不同、相互重叠的研究团体发起。一方面,并行离散事件仿真 (PDES) 团体关注通过利用高性能计算平台来加速离散事件仿真的执行。大约在同一时间范围内,分布式仿真团体从国防团体的研究和开发工作中发展而来,该团体专注于将通过局域网和广域网互连的计算机上执行的单独开发的仿真进行互连。这项研究最初侧重于用于培训目的的仿真,但很快扩展到包括物理设备的分析、测试和评估等领域。虽然 PDES 和分布式仿真之间存在重要差异,但也存在许多共同的问题。在这里,我们非正式地将并行和分布式模拟描述为一个领域,它涵盖了这两个社区在从紧密耦合的并行计算平台到通过广域网连接的松散耦合机器的平台上执行单个模拟程序而产生的问题。
分布式交互式仿真 (DIS) 是将飞机、坦克和其他军事模拟器连接在不同位置,以便一个模拟器的乘员可以“看到”、操作、“射击”或被模拟的其他车辆“摧毁”。指挥结构也可以模拟。这使部队可以在过于昂贵或危险的情况下进行练习和训练,而无法使用真实武器进行练习。模拟器是 Link Trainer 的技术后代,Link Trainer 是 1929 年推出的著名飞行模拟器。现代车辆模拟器使用电子数字计算机来计算仪表指示、视觉显示和声音应如何响应用户的控制操作而变化。过去十年中,一个突出的趋势是细节和表面真实感的提高,越来越便宜的计算能力可以生成和显示直升机飞行员可能通过座舱看到的场景,或坦克乘员可能通过潜望镜看到的场景。将模拟器的计算机连接到网络,使用互联网和其他技术以及标准通信程序,使每个模拟器机组人员能够与其他机组人员进行团队合作练习。本背景论文是技术评估办公室 (OTA) 对战斗建模和模拟技术评估的第三份出版物。它补充了 OTA 的背景论文《虚拟现实和战斗模拟技术》,该论文侧重于人机交互。
量子计算机正在快速发展,第一批经典难题已经通过量子计算机得到解决 [1]。尽管这些问题是人为的,专门设计用于展示量子计算机的强大功能,但预计在未来几年内,实际问题也将取得类似的成果。除了量子计算机,量子互联网也发展迅速,第一批小规模网络已经实现 [2]。量子网络允许许多新应用,包括新形式的加密 [3] 和增强时钟同步 [4, 5]。量子网络还允许另一种应用:分布式量子计算,其中不同的量子计算机通过量子网络连接起来。我们通常确定两种类型的分布式量子计算。在第一种中,单个算法太大而无法在量子设备上运行,因此将其细分为较小的部分,每个部分都可以在量子设备上运行。在第二种中,多方可以访问通过量子网络连接的本地量子计算机。各方可以协作对其输入执行量子计算,而无需明确共享它。第一种类型是资源问题。随着硬件的发展,可以运行更大的问题,并且不再需要分发算法。第二种类型更有趣,因为它为全新的应用开辟了道路。因此,在本文中,我们将重点介绍第二种类型的分布式量子计算。分布式量子计算自然扩展了经典的多方计算,允许多方安全地协作 [6]。我们考虑分布式量子计算的两种应用。第一种是分布式算术,第二种是基于距离的分布式分类。我们展示了这两种方法在分布式环境中的工作方式,并论证了为什么信息在协议执行期间保持安全。对于这两种应用,多方提供输入并共同执行算法,这样输出只会显示给一个特定的方,而不会泄露有关各个方输入的信息。在下一节中,我们将简要介绍量子计算和分布式量子计算的一些基本概念。在第三节和第四节中,我们分别讨论了分布式量子加法器和基于距离的分布式分类器。第五部分我们提供了分布式方法的资源数量。最后我们得出了一些结论和展望。
一、引言加州法律 1 将分布式能源 (DER) 定义为配电网连接的可再生发电资源、能源效率、能源存储、电动汽车和需求响应,是实现加州能源和气候目标的战略重点。加州已将采用 DER 作为履行其增加可再生和零碳资源以及支持交通和建筑电气化承诺的重要战略。2 基于 2019 年综合能源政策报告 (2019 IEPR) 的建议,2021 IEPR 建议该州改进可供能源用户使用的技术选项套件,以使他们作为灵活的电力消费者更好地根据系统条件调整负载。2021 IEPR 还就清洁能源技术创新的部署和电网利用提出了建议,以提高电网的可靠性和弹性,加速加州向零碳电网的过渡。加州能源委员会 (CEC) 负责收集和分析关键能源系统数据,以支持能源政策的制定,该委员会正在启动这一信息程序,以进一步探索、收集信息、进行评估、