DAC(数模转换器)在生物医学仪器、通信系统、机器人等各个领域发挥着重要作用。通常,当现实世界信号时,DAC 会并入大多数数字系统中。现实世界信号(如压力信号、声波、温度读数或图像)通过模数转换器 (ADC) 转换为数字形式。经过处理后,这些信号使用 DAC 转换回模拟信号。DAC 是驱动音频 - 视频应用、直流、交流或伺服电机控制、射频收发器或各种工业温度控制器等设备的电路的必备条件。刺激神经组织的共同目标位于中枢神经系统和周围神经系统 (PNS) 内。中枢神经系统 CNS 主要关注神经元群的正常运作。对神经元群的刺激是为了探测所述神经元群。刺激还利用神经假体装置为其用户提供感官反馈。临床上,为了缓解帕金森病和癫痫的症状,人们使用中枢神经系统刺激。同样,对于假肢的感觉反馈,周围神经系统 (PNS) 刺激也很有用 [1,20]。在最近的进展中,这种模拟被应用于高血压和炎症性疾病的治疗 [2,20]。现代 VLSI 技术可以实现小型化和完全植入式神经刺激器电路,同时允许设计人员集成大量通道,并允许增加功能。增加的功能使设计人员能够在不影响设备尺寸的情况下实现更高的刺激效果。修订稿于 2020 年 1 月 15 日收到。
摘要分析了两个耦合Qubits之间量子相关性的跟踪控制,其中只有一个量子位与马尔可夫环境耦合。这样的系统是一种广义模型,可以使用,例如研究核自旋与暴露于环境的电子旋转的问题。使用外部控制场,我们增加了系统保持连贯和纠缠的时间。控制场是应用于系统的外部电势,其中包含两个可调参数,即强度和相位。此外,我们提出具有不同目标的量子控制协议。首先,对于两个量子位的人口控制,其次是对两个两级系统的相干控制,最终用于控制纠缠。由于X状态的分析,可以直接通过纠缠直接识别目标函数。此外,我们已经表明,当考虑较小的耗散率时,控制方法会在量子位之间产生较大的稳定纠缠。
线性高斯探索性工具(例如主成分分析 (PCA) 和因子分析 (FA))广泛用于探索性分析、预处理、数据可视化和相关任务。由于线性高斯假设具有限制性,因此对于非常高维的问题,它们已被稳健、稀疏扩展或更灵活的离散-连续潜在特征模型所取代。离散-连续潜在特征模型指定依赖于数据子集的特征词典,然后推断每个数据点共享这些特征的可能性。这通常是使用关于特征分配过程的“富者得富”假设来实现的,其中词典试图将特征频率与其解释的总方差部分结合起来。在这项工作中,我们提出了一种替代方法,可以更好地控制特征到数据点的分配。这种新方法基于双参数离散分布模型,该模型将特征稀疏性和词典大小分离,从而以简约的方式捕获常见和罕见特征。新框架用于推导一种新型自适应因子分析变体 (aFA) 以及自适应概率主成分分析 (aPPCA),能够在各种场景中灵活地发现结构和降低维度。我们推导出标准吉布斯采样以及有效的期望最大化推理近似,这些近似以更快的数量级收敛到合理的点估计解。所提出的 aPPCA 和 aFA 模型的实用性在特征学习、数据可视化和数据白化等标准任务上得到了证明。我们表明,aPPCA 和 aFA 可以为原始 MNIST 或 COLI-20 图像提取可解释的高级特征,或者在应用于自动编码器分析时
语义细分是执行场景理解的有效方法。最近,3D鸟视图(BEV)空间中的细分已被驱动策略直接使用。但是,在商用车中使用的环绕式鱼眼摄像机的BEV细分工作有限。由于此任务没有现实世界的公共数据集,并且现有的合成数据集由于遮挡而无法处理Amodal区域,因此我们使用Cognata Simulator创建一个合成数据集,其中包括各种道路类型,天气和照明条件。我们将BEV细分概括为使用任何凸轮模型;这对于混合不同的相机很有用。我们通过在Fisheye图像上应用圆柱整流并使用基于标准LSS的BEV分割模型来实现基线。我们证明,我们可以在没有不明显的情况下实现更好的性能,这具有增加的运行时效应,这是由于预处理,视野和重新采样的伪像而导致的。此外,我们引入了一种可学习的bev池层策略,对鱼眼摄像机更有效。我们以遮挡推理模块来探讨该模型,这对于估计BEV空间至关重要。fisheyebevseg的定性 - 在视频中展示了https://youtu.be/hftpwmabgs0。
摘要 — 电力需求和可再生能源变化很大,规划模型的解决方案依赖于捕捉这种变化。本文提出了一种混合多区域方法,该方法考虑了极值,使用有限数量的代表日和每天内的时间点,有效地捕捉实际数据的日内和日间时间序列。提出了一种基于优化的代表提取方法来改进日内时间序列的捕捉。与层次聚类方法相比,它在保存数据时间序列和极值方面具有更高的精度。所提出的方法基于分段线性需求和供应表示,与传统的分段常数公式相比,它减少了近似误差。此外,通过映射过程创建的具有相同代表的顺序链接的日块用于日间时间序列的捕捉。为了评估所提出方法的效率,开发了一个全面的扩展联合规划模型,包括输电线路、储能系统和风电场。
越来越多的需求减少复杂的高维二词系统为简单,低维模型产生了许多不同的还原技术(参见Benner等人。[1],Rowley和Dawson [2],Ghadami和Epureanu [3],Brunton等。[4],Taira等。[5]和Touzé等。[6]用于最近的评论)。在这里,我们专注于这些方法之一的扩展,频谱亚算物(SSM)还原到分段光滑的机械系统。最初针对Haller和Ponsioen [7]的平滑动力系统定义,主要SSM是最平稳的不变流形,与稳定状态下线性化系统的光谱子空间相切,并且具有相同的尺寸。因此,SSM数学上正式化并扩展了Shaw和Pierre [8,9]和Shaw等人在开创性工作中引入的非线性正常模式(NNM)的最初思想。[10](有关最近的评论,请参见Mikhlin和Avramov [11])。每当光谱子空间内的线性频谱与该子空间之外的线性频谱之间,SSM在自主和非自治系统中的存在,唯一性和持久性已得到证明(Haller and Ponsioen [7][12]以及Haro和de la llave [13])。由最慢的线性模式跨越光谱子空间的主要SSM切线吸引了附近的所有轨迹,因此其内部动力学是一种理想的,数学上合理的非线性降低模型。最近的工作揭示了在𝐶∞
摘要 — 开发基于运动相关皮层电位 (MRCP) 的脑机接口 (BMI) 的一个重要挑战是在现实环境中准确解码用户意图。然而,与其他 BMI 范例相比,由于内源性信号特性,该性能仍然不足以进行实时解码。本研究旨在从预处理技术(即频谱滤波)的角度提高 MRCP 解码性能。据我们所知,现有的 MRCP 研究对所有受试者都使用了具有固定频率带宽的频谱滤波器。因此,我们提出了一种基于受试者的分段频谱滤波 (SSSF) 方法,该方法考虑了受试者在两个不同时间截面的个人 MRCP 特征。在本研究中,MRCP 数据是在受试者进行自我启动步行的动力外骨骼环境下获取的。我们使用实验数据和公共数据集 (BNCI Horizon 2020) 对我们的方法进行了评估。使用 SSSF 的解码性能为 0.86 (± 0.09),在公共数据集上的性能为 0.73 (± 0.06),适用于所有受试者。实验结果显示,与之前方法在两个数据集上使用的固定频带相比,该方法具有统计学上显著的增强 (p < 0.01)。此外,我们还通过伪在线分析展示了成功的解码结果。因此,我们证明了所提出的 SSSF 方法可以比传统方法包含更多有意义的 MRCP 信息。
摘要 网络分段是增强网络安全的一种非常重要的方法。该方法涉及将网络划分为更小、更易于管理的部分,每个部分都有各自的特定安全要求。此策略支持维护稳定的边界和有效的访问控制,同时保护关键资源(例如数据库服务器)免受未经授权的访问。网络分段在 IIoT 中的相关性恰好与许多设备的先进性和互连性有关,这些设备可能带来广泛的安全问题。为了应对这些挑战,安全 IIoT 网络分段框架被开发为 IIoT 环境的专用网络安全解决方案。该框架包括用于开发定制设计的具体指南,以改善安全态势并保护重要记录。在 IIoT 环境中,安全分段对于保持不同的业务结构分离至关重要,每个业务结构都有各自的特定保护要求,并保护它们免受互连设备带来的独特风险。访问因素的特定问题在 IIoT 网络中带来了精确的问题,因为它们充当许多设备的融合节点,因此确保提供多种类型的隐私泄露和与不同公司的交互。分段具有许多好处,包括加速保护、减少攻击面、简化合规性和改进设备管理。然而,它也使事情复杂化并增加了运营开销,并且还有成本问题。除了网络分段之外,还实施了许多技术来加强安全框架:联合 ID、微分段、防火墙、网络访问控制 (NAC)。它提供对唯一访问者的控制、执行安全规则并处理网络访问,同时支持分段工作并增强 IIoT 结构中的通用安全性。与网络分段相关的一种相关方法,尤其是在 IIoT 环境中,涉及增强安全性、保护敏感统计数据和遵守企业要求。通过使用 SiNeSF 等框架和补充安全技术,组织可以针对与联网 IIoT 设备相关的风险设置安全障碍构建、访问限制和危险限制。
锂离子电池降解的复杂性质导致文献中提出了许多基于机器的基于机器学习的方法。但是,使用复杂模型的机器学习在计算上可能很昂贵,尽管线性模型的速度更快,但它们也可能不灵活。分段线性模型提供了一种折衷,这是一种快速而灵活的替代方案,其计算上的昂贵不如神经网络或高斯过程回归等技术。在这里,将电池健康预测的分段线性方法(包括自动化功能选择步骤)与高斯流程回归模型进行了比较,并且发现在训练数据集中的中位错误方面表现出色,并且在第95个误差百分位数上的表现确实更好。特征选择过程演示了限制输入之间的相关性的好处。进一步的试验发现,分段线性方法可用于改变培训数据的输入大小和可用性。
摘要:家禽业在全球农业中起关键作用,家禽是蛋白质的主要来源,并为经济增长做出了重大贡献。但是,该行业面临着与重复性且苛刻的劳动密集型任务相关的挑战。自动化已成为提高运营效率并提高工作条件的关键解决方案。具体来说,机器人的操纵和对象的处理在工厂中变得无处不在。但是,存在挑战以预先识别和引导机器人处理一堆具有相似纹理和颜色的物体。本文着重于开发旨在自动化鸡的机器人解决方案的视觉系统,该机器人解决过程是一种基本的,但在家禽加工中是一种基本但身体上剧烈的活动。为了解决通用实例分割模型在识别重叠对象中的限制,开发了一种具有成本效益的双重活性激光扫描系统来生成对象上的精确深度数据。将经过良好的深度数据生成与RGB图像集成在一起,并将其发送到实例分割模型以进行单个鸡检测和识别。这种增强的方法显着改善了该模型在处理涉及重叠鸡的复杂场景中的性能。具体而言,RGB-D数据的集成将模型的平均平均精度(MAP)检测准确性提高了4.9%,并显着改善了中心偏移 - 本研究中引入的定制度量标准,以量化地面真相蒙版中心与预测的面具中心之间的距离。精确的中心检测对于开发未来的机器人控制解决方案至关重要,因为它可以确保在鸡肉重定过程中准确抓住。中心偏移量从22.09像素(7.30 mm)降低到8.09像素(2.65 mm),证明了该方法在缓解闭塞挑战和增强视觉系统的可靠性方面的有效性。