Loading...
机构名称:
¥ 1.0

越来越多的需求减少复杂的高维二词系统为简单,低维模型产生了许多不同的还原技术(参见Benner等人。[1],Rowley和Dawson [2],Ghadami和Epureanu [3],Brunton等。[4],Taira等。[5]和Touzé等。[6]用于最近的评论)。在这里,我们专注于这些方法之一的扩展,频谱亚算物(SSM)还原到分段光滑的机械系统。最初针对Haller和Ponsioen [7]的平滑动力系统定义,主要S​​SM是最平稳的不变流形,与稳定状态下线性化系统的光谱子空间相切,并且具有相同的尺寸。因此,SSM数学上正式化并扩展了Shaw和Pierre [8,9]和Shaw等人在开创性工作中引入的非线性正常模式(NNM)的最初思想。[10](有关最近的评论,请参见Mikhlin和Avramov [11])。每当光谱子空间内的线性频谱与该子空间之外的线性频谱之间,SSM在自主和非自治系统中的存在,唯一性和持久性已得到证明(Haller and Ponsioen [7][12]以及Haro和de la llave [13])。由最慢的线性模式跨越光谱子空间的主要SSM切线吸引了附近的所有轨迹,因此其内部动力学是一种理想的,数学上合理的非线性降低模型。最近的工作揭示了在𝐶∞

模型还原为分段平滑动力学系统中的光谱子手机

模型还原为分段平滑动力学系统中的光谱子手机PDF文件第1页

模型还原为分段平滑动力学系统中的光谱子手机PDF文件第2页

模型还原为分段平滑动力学系统中的光谱子手机PDF文件第3页

模型还原为分段平滑动力学系统中的光谱子手机PDF文件第4页

模型还原为分段平滑动力学系统中的光谱子手机PDF文件第5页

相关文件推荐