认知表现和最终痴呆症中的大量浮动是α-核核中疾病的重要特征,例如帕金森氏病和刘易体内痴呆,与皮质功能障碍有关。已经建议在患者的大脑皮层中存在错误折叠和聚集的α-核蛋白,在此过程中起着至关重要的作用。然而,A-突触核蛋白积累对体内细胞分辨率在细胞分辨率功能的功能的后果在很大程度上是未知的。在这里,我们使用野生型小鼠中的纹状体播种模型在大脑皮层中诱导了鲁棒的A-核蛋白病理。在单次注射A-突触核蛋白预构纤维的九个月后,我们观察到通过体内两光子钙在清醒小鼠中的体内两光子钙在体体皮质中的2/3层皮质神经元的功能发生了深刻的改变。我们检测到自发活性水平的提高,对搅拌和同步增加的反应增强。立体分析表明,在注射预构纤维的小鼠的体感皮层中,谷氨酸脱羧酶67阳性抑制性神经元减少。重要的是,这些发现指出了令人不安的激发/抑制平衡是电路功能障碍的相关驱动因素,这可能是α-突触性核核酸的认知变化。
摘要 引言 食管鳞状细胞癌 (OSCC) 是世界各地 (包括中国) 最常见的恶性肿瘤之一。迄今为止,IV 期 OSCC 患者的标准治疗是全身化疗和姑息治疗,但预后不佳。然而,关于放射治疗在 IVa 期 OSCC 患者中针对原发肿瘤的作用尚未达成共识。因此,本研究旨在评估原发性放疗联合 S-1 和奈达铂 (NPD) 化疗对 IV 期 OSCC 患者的疗效。 方法与分析 本研究是一项多中心、开放标签、随机对照试验。总共 180 名符合条件的 IV 期 OSCC 患者将随机分为研究组(90 名患者)和对照组(90 名患者)。研究组患者将接受剂量为 50.4 Gy 的原发肿瘤放疗,联合 4-6 个周期的 S-1 和 NPD 化疗。对照组患者仅接受4-6个周期的S-1和NPD化疗。研究将测量主要和次要结果。统计分析两组在总生存期、无进展生存期和安全性方面的差异。所有结果将在治疗前、治疗后和随访后确定。本研究结果将为放射治疗在中国IV期OSCC患者中的作用提供证据,为晚期食管癌患者提供新的治疗选择。 伦理与传播 本研究已获郑州大学第一附属医院机构伦理委员会批准(批准文号:SS-2018-04)。 试验注册 本试验于2018年11月1日在中国临床试验注册中心(ChiCTR1800015765)注册;回顾性注册,http://www. chictr.org.cn/index.aspx。
2013 年 10 月 8 日《国际海运固体散装货物 (IMSBC) 规则》修正案将于 2015 年 1 月 1 日生效,并可从 2014 年 1 月 1 日起自愿实施。有两项关键变化与可能流态化的货物(A 组货物)有关:1.对货物安全运输可接受性的评估。规则修正案包括对 A 组货物安全运输可接受性的更严格评估。这在新的第 4.3.3 节中有详细说明,并涉及在运输 A 组货物之前需要获得装运港主管当局的额外批准。具体适用如下:a) 托运人应建立货物取样、检测和控制水分含量的程序,确保货物在船上时低于适运水分限值(TML)。装货港主管当局应确认该程序符合《国际海运固体散货规则》和《易液化固体散货取样、检测和控制水分含量程序的制定和批准指南》(MSC.1/Circ.1454)的规定,然后才予以批准。装货港主管当局应签发文件,表明该程序已获批准。b) 文件的有效期不得超过五年。c) 该程序将接受主管当局的初次、续期和中期审核。装货港主管当局应核实程序的执行情况。说明程序的文件副本
• 增强边缘服务:XR11 提供多达 36 个 x86 内核,支持加速器、DDR4、PCIe 4.0、持久内存和多达 4 个驱动器 • 应对挑战:经过认证的坚固耐用型产品,适用于电信和国防应用,包括灰尘、极端温度、冲击、振动和其他环境变量 • 毫不妥协地增加多功能性:通过减小深度以及支持反向气流的前后端口选项,它为管理员提供了新的灵活性,而无需进行昂贵的改造或 HVAC 更新 • 提高使用寿命:使用寿命长,因此组织可以在不停机和中断的情况下提供改变游戏规则的服务
帕金森氏病(PD)是一种与年龄相关的不可逆性神经退行性疾病,其特征在于,由于nigra nigra pars pars compacta(SNPC)的多巴胺能(DA)神经元的丧失引起的一种逐渐恶化的非自愿运动障碍。PD的两个主要病理生理特征是受影响神经元中包含体的积累,以及在Nigra pars compacta(SNPC)(SNPC)和氯肾上腺素(LC)中含有神经元素的DA神经元的主要丧失。包含体包含错误折叠和聚集的α-核蛋白(α -syn)纤维,称为刘易体。PD的病因和致病机制是复杂的,多维的,并且与环境,遗传和其他与年龄有关的因素的组合相关。尽管已经广泛研究了与PD的致病机制相关的个体因素,但尚未设想发现发现与统一的致病机制的整合。在这里,我们提出了一种基于当前可用的实验数据的独特的高代谢活性耦合的高代谢活性耦合的升高能量需求,提出了PD中SNPC和NE神经元变性的综合机制。所提出的假设机制主要基于这些神经元的独特高代谢活性升高的升高。我们认为,在PD中,SNPC和NE神经元中选择性的DA神经元的高脆弱性可能是由于细胞能量调节。这种细胞能量调节可能会引起这些神经元中氧化还原活性金属稳态(尤其是铜和铁)的DA和NE代谢失调。
最近邻间距分布遵循一维泊松分布P(s)=e−s[7],而混沌系统则表现出能级排斥力,其P(s)根据其对称性类接近于随机矩阵理论(RMT)的维格纳猜测,当s较小时,P(s)∝sβ,其中对正交、酉和辛对称,β=1,2,4,这是著名的Bohigas-Giannoni-Schmit(BGS)猜想的内容[8]。BGS猜想现在在半经典理论中得到了很好的证实,适用于具有适当经典极限的系统[9-11],并得到许多不同量子系统中大量数值和实验证据的支持[12-14]。多体量子系统的情况则不太清楚,尽管最近取得了一些理论进展 [ 15 – 17 ] 。由于费米子或玻色子粒子交换下的对称性,经典极限无法正确定义。通常,BGS 猜想被认为对多体量子系统也成立,这主要基于数值结果,但仍缺乏严格的推导。可积和混沌通用极限之间的转变是非通用的,取决于所研究的特定系统的特性,尽管已针对不同系统进行了非常详细的探索 [ 18 , 19 ] 。例如,在可积与混沌正交情况之间的转变中,一些系统表现出分数能级排斥,P(s)∝sβ,β值在可积情况β=0与对应的RMT系综值β=1之间连续变化,而其他系统则表现出满能级排斥,但仅限于一部分能级[20]。许多系统,特别是多体情况,表现出前一种行为。然而,Berry和Robnik的半经典转变理论预测了后一种行为[19]。在这种情况下P(0)=F,其中F由所考虑模型的经典极限的相空间中规则轨道的分数给出。在开放量子系统中,该理论的发展要落后得多,即使第一批结果是在BGS猜想提出后不久就出现的[21]。开放量子系统可以用刘维尔方程来描述,该方程表征密度矩阵算子随时间演化的特征。在马尔可夫近似下,刘维尔算子是线性非厄米算子,刘维尔方程可以写成林德布拉德主方程 [22] 。因此,刘维尔算子具有复特征值,而不是标准厄米量子力学的实能量。该问题的最初方法是研究与环境耦合较弱的可积或混沌汉密尔顿量。当汉密尔顿量可积时,Grobe 等人研究了复平面上的谱统计,发现与二维泊松分布符合得很好 [21] 。在混沌极限中,对于较小的s值,存在普遍的立方斥力P(s)∝s3,就像在非厄米随机矩阵的Ginibre系综中一样[23],尽管完整P(s)分布的细节取决于非厄米矩阵的对称性[24,25]。对于开放量子自旋链,从可积到混沌的转变中的能级间距分布可以通过具有谐波约束的静态二维库仑气体来拟合,其中能级斥力由温度的倒数给出,表现出转变中的分数能级斥力[26]。最近,由于发现了新的可积多体刘维尔粒子家族[27-29],人们需要采用不同的方法来研究开放量子系统的可积和混沌特性。扩展精确可解和量子可积的 Liouvil 函数类是提高我们对开放量子多体系统的理解的重要一步。最近的一些工作研究了随机混沌 Liouvil 函数复谱的统计特性 [ 30 , 31 ] 。然而,在物理多体 Liouvil 函数中,精确可解的可积极限和混沌极限之间的转变仍然大部分未被探索。在本文中,我们将基于 SU(2) 自旋 1 Richardson 模型的文献 [ 28 ] 模型扩展到有理 Richardson-Gaudin (RG) 类可积模型中的可积线。这种新的可积 Liouvil 函数族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们[ 28 ] 基于 SU(2) 自旋 1 Richardson 模型,将其转化为有理 Richardson-Gaudin (RG) 类可积模型中的一条可积线。这种新的可积 Liouvillians 族具有丰富而复杂的跳跃算子结构,并允许沿可积线进行简单的参数化。然后我们
出生年份:1952年出生地点:美国公民婚姻状况:已婚(性别:男性)家庭住址:141 Erica Way,Portola Valley,CA 94028电话(650)714-7005替代电话(650)854-9114-9114教育和就业记录(当前的教育和就业记录)微生物学1970-74爱荷华州爱荷华州,爱荷华州博士微生物学1974 - 79年USPHS细胞和分子生物学领域的学期学会1975 - 78年芝加哥大学,芝加哥,伊利诺伊州芝加哥大学,伊利诺伊州博士后1979-83 USPHS病毒学博士学生学员1979-81 1979 - 81 Professor of Microbiology & Immunology 1983-89 Associate Professor of Microbiology & Immunology 1989-95 Chairman of the Department of Microbiology & Immunology 1995-99 Professor of Microbiology & Immunology 1995-06 Professor Emeritus 5/2006 Stanford University, Stanford, California Associate Dean of Research 2000-01 Emory University, Atlanta Georgia Robert W.伍德拉夫微生物学和免疫学教授2006-2021埃默里疫苗中心2006-2021名誉教授1/2022专业休假:Systemix,Palo Alto,California,California,1990年(6 Mo。)Aviron,山景,加利福尼亚,1995年(6个月)medimmune-astrazeneca杰出研究员11/2008-1/2011