我向作者 P. Kannaiah 博士、K.L. 教授表示祝贺。S.V.U. 的 Narayana 和 K. Venkata Reddy 先生。蒂鲁帕蒂工程学院出版了这本关于“机械制图”的书。本书首先介绍了工程制图的基础知识,然后作者系统地介绍了机械制图。在我看来,这是一种极好的方法。这本书对机械工程专业文凭、学位和 AMIE 级别的学生来说都是一本宝贵的书。P. Kannaiah 博士拥有约二十五年的丰富教学经验,这些经验得到了充分利用,正确地反映了对该主题的处理和呈现。K.L. 教授机械工程教授 Narayana 和车间主管 K. Venkata Reddy 先生明智地联手,从他们丰富的经验中提供有用的插图,这一独特之处是本书的一大财富,其他书籍可能没有这样的机会。任何绘图书都必须遵循 BIS 标准。作者在这方面做得非常细致。此外,本书毫无遗漏地涵盖了印度各大学的教学大纲。学习绘图原理并将其应用于工业实践对任何学生来说都是必不可少的,本书是工程专业学生的宝贵指南。它也是工业设计和绘图部门的参考书。本书几乎是机械绘图的完整手册。本书是学生和专业人士学习计算机图形学的基础,计算机图形学是现代的必备课程。我相信工程专业的学生会发现这本书对他们非常有用。
比例并根据统计检验的结果得出结论。使用数字理论设计各种密码。将图理论应用于网络路由问题等实时问题。单元I:基本概率和随机变量:随机实验,样本空间事件,概率的概念概率的公理,一些有关概率分配的重要定理,条件性概率定理,对条件性概率,独立事件,独立事件,贝叶斯定理或规则。随机变量,离散概率分布,随机变量的分布函数,离散随机变量的分布函数,连续随机变量单元II:抽样和估计理论:种群和样本,使用和不替换随机示例进行统计推理采样,随机数量量级统计分布,频率分布,相对频率分布,相对分布,计算,计算,计算,均值分布,计算,计算,计算,计算。公正的估计值和有效估计点估计值和间隔估计值。可靠性置信区间的人口参数估计,最大似然估计单元III:假设和意义的检验:统计决策统计假设。null假设假设测试和I型和II型误差的显着性和II型误差的显着性测试水平,涉及正态分布的一尾和两尾测试P值的特殊样本的特殊测试特殊测试的特殊样本具有估算理论和假设测试特征曲线之间的小样本关系的特殊显着性测试。测试质量控制图的功率将理论分布拟合到样本频率
摘要:遥感 (RS) 目前被视为用于科学目的的入侵和扩张植物测绘的标准工具之一,并在自然保护管理中得到越来越广泛的应用。RS 方法的适用性由其局限性和要求决定。最重要的限制之一是物种覆盖率,在此覆盖率下分类结果是正确的并且对自然保护有用。2017 年在波兰三个地区开展的主要目标是确定可以通过 RS 方法识别目标物种的最小覆盖率。本研究的第二个目标与方法的要求有关,即根据多边形数量和目标物种的丰度百分比覆盖率优化目标物种的训练多边形集。我们的方法必须易于使用、有效且适用,因此使用基本栅格集(最小噪声分数 (MNF) 变换后的前 30 个通道(来自光谱范围为 0.4–2.5 µ m 的 HySpex 传感器的高光谱数据马赛克)和常用的随机森林算法进行分析。该分析使用空间分辨率为 1 m 的机载高光谱数据对一种入侵植物和三种扩张植物(两种草类和两种大型多年生植物)进行分类。地面训练和验证数据集与机载数据收集同时收集。在测试不同的分类场景时,仅更改目标物种的训练多边形集。分类结果基于三种方法进行评估:准确度测量(Kappa 和 F1)、具有不同物种覆盖度的子类中的真阳性像素以及与现场制图的兼容性。分类结果表明,要将目标植物物种分类到可接受的水平,训练数据集应包含物种覆盖度在 80-100% 之间的多边形。仅使用具有可变但较低覆盖度(20-70%)的物种的多边形进行训练,并在 80-100% 范围内缺失样本,导致地图不可接受,因为对目标物种的估计过高。考虑到生态系统是异质的,我们在物种覆盖度超过 50% 的地区实现了物种的有效识别。这些研究的结果开发了一种现场数据采集方法,以及在机载数据采集以及地面采样的训练和验证中同步的必要性。