对于工程制图科目,相关科目教师将根据课堂上准备的报告/提交内容对日常工作进行评估,满分为 15 分。每学期有两次期中考试,每次持续 2 小时,满分为 15 分,较好的中间分数占 80%,另一个占 20%。主观试卷包含 5 个问题,每个问题占 10 分,3 个问题的分数将压缩为 15 分,任何小数部分应四舍五入到下一个更高的分数。内部考试没有客观试卷。日常评估和内部测试分数的总和将作为该科目的最终学期分数。工程制图的期末考试模式为 5 个问题,非此即彼,每题 14 分。期末考试中没有客观题。
简介 了解地点之间的距离是地理学家的基本任务,而距离的表示是制图的主要功能之一。这就是为什么时间距离表示是当代地理学家的关键工具。在为表示时空变形而引入的各种地图类型中,时空浮雕制图在 20 世纪 90 年代得到了补充。一方面,当前的全球化进程只有通过高速行驶,特别是航空运输的发展,才能缩短时间距离。另一方面,大都市化进程被视为全球化的城市对应物,与航空平台的发展密切相关。这两种现象都与距离的形成有着内在联系,尤其是时间距离。本章的目的首先是揭示一套解决方案,以解决由交通工具转换的距离的制图表示问题。在第二步中,我们将讨论这些制图解决方案与围绕经典理论模型构建的时空理论地理论述之间的关系。
计算机视觉和摄影测量的结合可以从图像中生成三维 (3D) 信息,这促进了点云在制图方面的广泛应用。大规模地形图制作需要高精度和准确度的 3D 数据来表示地球表面的真实状况。除了 LiDAR 点云之外,基于图像的匹配也被认为能够从多视图图像中生成可靠且详细的点云。为了检验和分析 LiDAR 和基于图像的匹配在大规模详细制图方面的可能融合,点云由半全局匹配 (SGM) 和运动结构 (SfM) 生成。为了进行全面和公平的比较,本研究使用了同时获取的航空照片和 LiDAR 数据。定性和定量评估已用于评估 LiDAR 和图像匹配点云数据的可视化、几何精度和分类结果。比较结果得出结论,LiDAR 是大规模制图的最佳数据。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
摘要:本研究采用基于知识的模糊分类方法,通过分析从数字高程模型 (DEM) 获得的形态参数 (地形属性) 对城市地区可能的土壤地貌进行分类。以柏林市区为例,比较了两种不同分辨率的 DEM 在寻找地貌、土壤类型之间的特定关系以及这些 DEM 用于土壤制图的适用性方面的潜力。几乎所有的地形参数都是从高分辨率光探测和测距 (LiDAR)-DEM (1 m) 和先进星载热发射和反射辐射计 (ASTER)-DEM (30 m) 获得的,这些参数被用作对选定研究区域内地貌进行分类的阈值,总面积约为 39.40 km 2 。通过将地面点样本作为地面真实数据与分类结果进行比较,评估了两种分类的准确性。基于 LiDAR-DEM 的分类在将城市地区的地貌分类为地貌(子)类别方面表现出良好的效果。总体准确度为 93%,这说明该分类结果令人满意。而基于 ASTER-DEM 的分类准确度为 70%。基于 ASTER-DEM 的分类较为粗糙,需要与土壤形成因素直接相关的更多详细信息来提取地貌参数。在对地貌进行分类时,使用 LiDAR-DEM 分类的重要性尤为明显
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用更粗略的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
背景和目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用不同分辨率的数字高程数据集开发的洪水模型的精度统计数据,这些模型来自光检测和测距以及干涉合成孔径雷达系统。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量和均方根误差统计测试了模型的有效性和准确性。发现:结果表明,使用光检测和测距数据集,该模型的准确率分别为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,该模型的误差矩阵、f 测量和均方根误差的准确度分别为 76%、0.34、0.53。结论:使用光检测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型具有更高的准确度。尽管如此,考虑到模型实施成本和较小的精度残差误差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用更粗的数据集来优化洪水模拟和测绘工作的预算。
关键词:空间数据库、制图、可视化、GIS、地图绘制、知识库 摘要:空间数据库包含代表现实世界的要素类。地理数据库的内容主要用于 GIS 分析。然而,用于制图可视化的空间数据库应该包含更多的可视化规则和信息。空间数据库的制图可视化通常采用地图格式。本研究中表达的联合作战图形 (JOG) 是矢量智能地图 1 级 (VMAP L-1) 空间数据库的制图可视化。比例为 1:250000 的 JOG 空中和地面系列用于盟军的联合作战。VMAP L-1 是一个空间数据库,其内容是中等比例尺地图,例如比例为 1:250000 的 JOG。 JOG 空中和地面系列用于规划短距离和长距离飞行、空地战术作战、直升机作战、战术和近距离空中支援、视觉导航、空地协调作战以及地面部队和民航的战略/作战规划目的。JOG 系列的第一版和第二版分别由测绘总司令部 (GCM) - (Harita Genel Komutanlığı-HGK) - 于 1971-1973 年和 1983-1987 年间制作。矢量智能地图 1 级 (VMAP L-1) 数据库目前用于通过数据库驱动的制图可视化方法制作第三版。基于数据库驱动制图的可视化不仅可以生成不同的