摘要:本文主要讨论胶带剥离强度的测量。剥离强度是将两种粘合材料相互分离所需的平均力,适用于航空航天、汽车、粘合剂、包装、生物材料、微电子等各种行业。剥离试验数据用于确定粘合接头的质量,并在适用的情况下提供有关工艺效果的信息。剥离试验是拉伸方向的恒速试验。在材料试验中,剥离强度是通过测量和平均剥离样品的负载并将平均负载除以粘合剂的单位宽度后计算得出的。不同类型的材料使用不同的粘合剂进行粘合。可用于研究粘合强度的不同类型的剥离试验有 90º、135º、180º 和 T 型剥离试验。该机制主要侧重于 180º 剥离型试验。[1]本研究的重点是通过 180 度剥离强度测量机获得精确读数。在剥离强度测量机的这种机制中,低转速的电机将借助联轴器驱动动力螺杆。丝杠的旋转运动将转换为工作台的线性运动。支撑杆支撑安装在丝杠上的工作台,粘合强度将借助测量仪进行测试。180度剥离强度测量机可以以更高的精度测量应用于任何表面的胶带的粘合性。它不需要润滑,维护成本也很低。机器成本更低,工作速度更快。关键词:剥离强度、180度剥离试验、低转速电机、丝杠、测量仪。
耐电弧性 IPC-650 2.5.1 秒 242 秒 242 弯曲强度 (MD) IPC-650 2.4.4 kpsi 24 16 N/mm 2 165 弯曲强度 (CD) IPC-650 2.4.4 kpsi 15 8 N/mm 2 103 拉伸强度 (MD) ASTM D 3039 psi 16,800 N/mm 2 116 拉伸强度 (CD) ASTM D 3039 psi 11,000 N/mm 2 75.8 杨氏模量 (MD) ASTM D 3039 psi 10 6 N/mm 2 8,343 杨氏模量 (CD) ASTM D 3039 psi 10 6 N/mm 2 7,171 泊松比 (MD) ASTM D 3039 0.14 0.14 泊松比 (CD) ASTM D 3039 0.10 0.10 断裂应变 (MD) ASTM D 3039 % 1.6 % 1.6 断裂应变 (CD) ASTM D 3039 % 1.4 % 1.4 压缩模量 (Z 轴) ASTM D 695 (23ºC) kpsi 385 N/mm 2 2,650 剥离强度 (1 盎司 VLP) IPC-650 2.4.8 (热应力) 磅/英寸 12 N/mm 2.1 剥离强度 (1 盎司 VLP) IPC-650 2.4.8.3 (150ºC ) (高温) 磅/英寸 14 N/mm 2.5 剥离强度 (1 盎司VLP)IPC-650 2.4.8秒5.2.3 (Proc. Chemicals) 磅/英寸 11 N/mm 2.0 密度 (比重) gm/cm 3 2.28 gm/cm 3 2.28 比热 ASTM E 1269 (DSC) (100ºC) J/g/K 0.99 J/g/K 0.99 热导率 ASTM F 433 W/M*K 0.29 W/M*K 0.29 T d (热分解温度) IPC-650 2.4.24.6 2% 重量损失 ºC 528 ºC 528 T d (热分解温度) IPC-650 2.4.24.6 5% 重量损失 ºC 547 ºC 547 CTE (x) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 10 8 ppm/ºC 8 热膨胀系数 (y) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 13 10 ppm/ºC 10 热膨胀系数 (z) IPC-650 2.4.41 (>RT - 125ºC) ppm/ºC 108 104 ppm/ºC 108
摘要 无银 AMB 技术解决了适用于汽车应用的活性金属钎焊 (AMB) Si 3 N 4 基金属陶瓷基板 (MCS) 与适用于要求较低的应用的经济高效的直接铜键合 (DCB) Al 2 O 3 基板之间的成本性能差距。condura ® .ultra 工艺的成本降低是通过将无银钎焊技术与高效钎焊工艺相结合而实现的。在本报告中,我们将展示热循环能力、condura ® .ultra 工艺的剥离强度以及成本设计的 Si 3 N 4 陶瓷基板。另外还展示了隔离局部放电性能和热阻测量稳定性的结果。关键词 无银、活性金属钎焊、成本设计、氮化硅
耐电弧性 IPC-650 2.5.1 秒 >180 秒 >180 弯曲强度 (MD) IPC-650 2.4.4 psi >23,000 N/mm 2 >159 弯曲强度 (CD) IPC-650 2.4.4 psi >19,000 N/mm 2 >131 剥离强度 (1 盎司 ED) IPC-650 2.4.8 磅/英寸 12 N/mm 2.1 热导率 ASTM F 433 W/M*K 0.19 W/M*K 0.19 热膨胀系数 (XY 轴) ASTM D 3386 (TMA) ppm/ ° C 21-23 ppm/ ° C 21-23 热膨胀系数 (Z 轴) ASTM D 3386 (TMA) ppm/ ° C 215 ppm/ ° C 215 可燃性等级UL 94 V-0 V-0
温度范围为 <-55 o C 至 >300°C 以上,符合 NASA 低排气规格 MicroCoat MCT 34T71ND-2 具有独特的性能特性组合,包括高剪切和剥离强度以及方便的操作和高/低温特性,可轻松评定为 MSL1。这种吸湿性极低的粘合剂在 30 o C/85%RH 下已使用超过 1 年,可用于 MSL1 封装。MCT 34T71ND-2 是一种军用和医用微电子密封粘合剂,是一种 100% 固体单组分非导电热固性导电粘合剂,主要用于密封军用、医用、“井下”混合设备、光电子、汽车传感器和所有 LCP 封装等中热膨胀不匹配的封装。医疗应用:此配方中不存在任何成分,在任何先前的评估中会导致细胞毒性或 USP VI 测试失败。 ISO 13485 不排除材料,除非公司专门设计,在这种情况下我们需要更多地了解您的质量系统的设计。一种改进的耐高温材料。这是一种单组分系统,配方可在高温下固化,可承受 85/85 超过 3500 小时。MCT 34T71ND-2 具有几个突出的加工优势;
ASTM D 1002 搭接剪切强度 (psi) 2024 T-3 铝 FPL 蚀刻温度:- 67° F 3,500 75° F 4,000 180° F 2,750 250° F 1,500 300° F 900 400° F 400 ASTM D 1002 拉伸搭接剪切强度 (psi) @ RT 浸泡 7 天后:喷气燃料 4,000 MIL H 83282 4,000 MIL L 7808J 4,000 MIL H 5606 4,000 MIL L 23699 4,000 ASTM D 1002 拉伸搭接剪切强度 (psi) @:RT 浸泡 30 天后@125F / 85% 湿度 4,000 180°F,浸泡 30 天@125°F/85% 湿度 2,500 ASTM D 1876 T 剥离强度 (pli) 于:RT 10 180° F 15 RT 在 Jet A 燃料中浸泡 7 天@RT 15 RT 在 MIL H 83282 中浸泡 7 天@RT 15 RT 在 MIL H 5606 中浸泡 7 天@RT 15 RT 在 MIL L 7808J 中浸泡 7 天@RT 15 RT 在 MIL L 23699 中浸泡 7 天@RT 15 RT 在 125°F / 85% 湿度下浸泡 30 天 15 180°F,浸泡 30 天@125°F / 85% 湿度 15
CeTePox ® AM XP 152 A、AM 5597、AM XP 332 C 是一种无溶剂环氧预浸料系统,通常在 100 - 130 °C 的温度下固化。由此产生的预浸料具有良好的悬垂性、可控的粘性和流动性,以及在室温下至少 1 个月的更长保质期。由于具有出色的热性能和机械性能,该系统适用于生产需要改进抗疲劳性的结构部件。由于优化了纤维基质粘合性,该系统即使在热应力和热湿应力下也能提供出色的剥离强度和层间剪切强度。建议将树脂加热至 50 - 60 °C 并添加 AM 5597,然后彻底均质混合物。AM XP 332 C 应在使用前作为最少组分添加。混合物的温度不得超过 50 °C,并应仔细控制以防止放热反应。特性 单位 AM XP 152 A AM 5597 AM XP 332 C 典型数据 粘度@20°C Pas - 80-120 100-200 粘度@80°C Pas 1-5 - - EEW(固体)g/当量 260-280 - - 混合比例 重量份数 pbw 100 15 5 反应性 凝胶时间@130°C 分钟 5,5 +/- 1 预浸料保质期* 月 2(*典型值取决于干燥条件) 混合粘度取决于温度
高密度PWB Ryoichi Watanabe和Hong的新电路编队技术赢得了Kim Samsung Electro-Mechanics Co.,Ltd。Suwon,S。韩国摘要为满足普华永道的未来需求,已讨论了普华永道的各种流程,材料和工具的技术。特别重要的是高端PWB的电路形成技术。在这些年中,从工业上讲,良好模式的电路形成方法已经改变了从减法过程到半添加过程(SAP)。SAP可以形成更细的电路,因为它不会引起侧面蚀刻,这是减法方法的问题。但是,SAP的闪光蚀刻过程会导致其他问题,例如由于电路之间的残留种子金属层,电路蚀刻和由于蚀刻而引起的电路分层引起的短缺陷。同样,由于形成电路的绝缘体表面的粗糙度,不仅有良好的电路形成的困难,而且是电特性的损失。在本文中,讨论了一种新的电路形成方法,以克服SAP原因闪光蚀刻过程的问题。它不需要闪光蚀刻过程,因此可以形成更细的模式。该细线电路形成的能力取决于图案抵抗分辨率,并被确认在L/S(线/空间)= 10/10UM或更少的情况下表现良好。也将电路模式埋在绝缘体层中,并且是带有绝缘体表面的刨床,因此电路具有高骨强度,具有绝缘体,并且通过制造设备或工艺之间的处理,损坏较小。此方法适用于建立PCB和FCP作为满足未来需求的电路形成技术。介绍电子设备的演变,该电子设备的发展速度更快,更小,更多功能但更具成本效益,PWBS的各种技术对于较高的密度需要各种技术。三星电力学有限公司,有限公司制造了许多PWB,例如HDI,用于手机,数字静止相机等,BGA软件包,FC BGA包装。为了满足未来的需求,特别是对于FCBGA,由于其高密度,生产FC BGA的产品变得越来越困难。电路的形成是需要在高密度方面快速进步的过程之一。已讨论了作为电路形成过程的减法过程和半添加过程(SAP),以提高其高密度。1,3但是,由于化学蚀刻而引起的减法过程具有侧面蚀刻的基本问题,并且由于闪光蚀刻过程,SAP具有局限性。SAP的闪光蚀刻过程会导致电路蚀刻等问题,如图1所示,在电路底部切割,如果闪光蚀刻不足,则在电路底部和种子层残基。由于种子层通常是铜,与电路相同,因此闪光蚀刻过程不仅蚀刻了种子层,还可以蚀刻电路。因此,电路宽度和厚度必须比闪光蚀刻之前的最终尺寸更宽,更厚,以在闪光蚀刻后保持设计规则。例如,在降低20UM电路的底部分离后,如图1所示,仅粘附的宽度仅为20UM螺距,如图1所示。这被认为是不足以为20UM电路提供足够的剥离强度。当电路变得更细时,由于制造输送机或滚筒的处理损坏,底切将是一个更大的问题,制造业产量将更低。出于这些原因,需要基于新概念的电路形成技术才能使线路电路形成并解决这些技术困难。