情节扭曲:当RNA证据挑战我们对DNA结果的期望时,Alexandra Richardson,MS; Terra Brannan,博士; Colin Young博士; Marcy Richardson博士; Carrie Horton,MS-CGC; Heather Zimmermann,博士背景:配对的DNA和RNA测试(DGT-RGT)通过检测位于标准的下一代序列(NGS)捕获以外的剪接变体和提供变体分类中的证据范围来提高DNA结果的准确性。DGT-RGT的另一个好处是识别导致意外或非常规剪接事件的变体。在这里,我们提出了一个变异级别的病例系列,该病例序列突出了通过DGT-RGT在一个临床诊断实验室中鉴定出的意外RNA发现。变体呈现:变体1-NF1 C.888+2T> C会影响剪接供体部位内的规范位置,从而根据当前ACMG指南将其分类为病原(LP)。最近的研究表明,+2位置的T> c取代能够在某些基因组环境中产生野生型转录本。DGT-RGT并未确定与该变体相关的明显异常剪接,这与载体中缺乏神经纤维瘤病一致。变体2- BRIP1 c.727a> g(p.i243v)是中期错义变化,在硅剪接站点中,该算法预测了创建强大的de从头供体站点。RNA研究证实了这种新型供体部位的使用,但出乎意料地表明,外显子内的现有隐性受体位点同时被激活,从而有效地在外显子内产生了伪内龙。在计算机剪接算法中预测了新型U2受体位点的创建。变体3&4 NF1 C.5750-184_5750-178 duptttcttc和atm c.3480g> t(p.v1160v)分别是内含子和同义中的中性和同义性中性变化。RNA测试确定了使用远处的隐性受体部位引起的异常转录本。这两个变体都会增加神秘受体上游隐秘的多吡啶氨酸段中的嘧啶含量。多嘧啶界是受体剪接位点识别中的重要组成部分,但据我们所知,尚未据报道隐性多吡啶氨酸裂纹激活作为异常剪接的机制。变体5&6 -BRCA2 [C.6816_6841+1534DEL1560; c.6762delt]和APC c.1042c> t(p.R3248*)预计由于过早终止密码子(PTC)而导致无义介导的衰减(NMD),因此根据ACMG指南将其归类为致病性。然而,RNA测试表明,这些变体引起了框架内的剪接事件,从而去除了PTC,这一发现与载体中相关的基因 - 疾病表型不存在一致。变体7- lztr1 c.2232g> a(p.a744a)是一种高频同义词,位于内含子的下游,它通过毫无常见的U12剪接体剪接。RNA测试表明,新型U2受体位点经常与现有的上游,隐秘的U2供体站点一起使用,但仅在某些个体中。其他具有低级异常剪接的概率对于弱化隐秘的U2供体部位的常见多态性是纯合的。结论:据我们所知,这是影响内含子的U2/U12-身份的单个核苷酸变化的第一个例子,它也例证了转录组中的个体变异性。
抽象的背景干旱应力严重阻碍了全球农业生产力,也可能导致对DNA甲基化水平的修改。然而,DNA甲基化的动力学及其与干旱胁迫下基因转录和替代剪接(AS)变化的关联是亚麻籽中未知的,这在干旱和半干旱地区经常培养。结果我们分析为耐旱剂(Z141)中的事件和DNA甲基化模式,而对干旱胁迫(DS)和重复的干旱胁迫(RD)治疗中的对干旱敏感的(NY-17)则分析。我们发现,在干旱压力下,Z141和NY-17中的内含子扣(IR)和替代3'剪接位点(ALT3'SS)事件的数量明显更高。我们发现对DS处理的亚麻籽反应主要受转录调节,而对RD处理的反应是通过转录和AS进行的。整个基因组DNA甲基化分析表明,干旱应激导致整体甲基化水平的总体甲基化水平升高。尽管我们没有观察到差异甲基化基因(DMG)与差异基因(DSG)之间的任何相关性,但我们发现,在Z141中,其基因身体区域过度甲基化的DSG和在NY-17中甲基化过度甲基化的DSG在纽约-17中富集了纽约 - 甲基化症状响应响应基因(GO)的含量。这一发现意味着基因体甲基化在某些特定基因的调节中起重要作用。结论我们的研究是对亚麻籽甲基化变化以及在干旱和重复的干旱胁迫下的关系的首次全面基因组分析。我们的研究揭示了在DS和RD处理下差异表达的基因(DEG)和DSG之间的不同相互作用模式,以及甲基化和随着对干旱和干旱敏感的亚麻籽品种的调节之间的差异。调查结果可能会在将来引起人们的关注。我们的结果为基因表达之间的关联提供了有趣的见解,在干旱胁迫下亚麻籽中的DNA甲基化和DNA甲基化。这些关联的差异可能解释了亚麻籽公差的差异。关键字干旱应力,替代剪接,DNA甲基化,亚麻籽,转录组
此预印本版的版权持有人于2025年2月23日发布。 https://doi.org/10.1101/2025.02.18.25321172 doi:medrxiv preprint
(a) Prime Editor 活性报告基因 (PEAR) 的示意图。PEAR 的机制基于与 BEAR 相同的概念,并且包含相同的非活性剪接位点,如图 (a) 所示。PE 可以将“G-AC - AAGT”序列恢复为规范的“G-GT-AAGT”剪接位点。与 BEAR 不同的是,这里的 Prime 编辑发生在 DNA 的反义链上,因此,这种方法使我们能够将间隔序列定位在内含子内。这里,整个间隔的长度是可以自由调整的(显示为“N”-s)。剪接位点的改变的碱基显示为红色,编辑的碱基显示为蓝色。PAM 序列为深绿色,nCas9 为蓝色,融合的逆转录酶为橙色。
杜氏肌营养不良症是一种罕见且致命的遗传性疾病,因 DMD 基因突变导致进行性肌肉萎缩。我们使用 CRISPR-Cas9 Prime 编辑技术开发了不同的策略来纠正 DMD 基因中外显子 52 或外显子 45 至 52 缺失的移码突变。使用优化的 epegRNA,我们能够在高达 32% 的 HEK293T 细胞和 28% 的患者成肌细胞中诱导外显子 53 剪接供体位点的 GT 核苷酸的特异性替换。我们还分别在 HEK293T 细胞和人类成肌细胞中实现了外显子 53 的 GT 剪接位点的 G 核苷酸的缺失高达 44% 和 29%,以及在外显子 51 的 GT 剪接供体位点之间插入 17% 和 5.5% 的 GGG。修改外显子 51 和外显子 53 的剪接供体位点可引发它们的跳跃,从而分别允许外显子 50 连接到外显子 53 和外显子 44 连接到外显子 54。如蛋白质印迹所示,这些修正恢复了肌营养不良蛋白的表达。因此,使用 Prime 编辑在外显子 51 和 53 的剪接供体位点诱导特定的替换、插入和缺失,以分别纠正 DMD 基因中携带外显子 52 和外显子 45 至 52 缺失的移码突变。
1哥伦比亚大学欧文大学病理和细胞生物学系,纽约,纽约,纽约10032,2陶布阿尔茨海默氏病研究所,哥伦比亚大学欧文大学欧文大学医学中心,纽约,10032,纽约,10032范德比尔特遗传学研究所,范德比尔特大学医学中心,田纳西州纳什维尔,37232,5蛋白质组学和大分子晶体学共享资源,赫伯特·欧文综合癌症中心,纽约,纽约10032,6神经病学系,纽约6号,纽约市校友医学中心,纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市纽约市,纽约市,哥伦比亚大学欧文大学神经病学,纽约长老会医院,纽约,纽约,10032,8拉什阿尔茨海默氏病疾病中心,拉什大学医学中心,伊利诺伊州芝加哥,60612,9 Ann Romney Neurology,Ann Romney Neurolologic疾病中心,Brigham和Brigham妇女医院和哈佛医疗机构,bastern and basterts and Massets,Massets,Massets and Masluards and Masluards and Masluards and Masluards and Masluards,大学,马萨诸塞州剑桥市02138
异常的替代前MRNA剪接在MYC驱动的癌症中起关键作用,因此可能代表了治疗性脆弱性。在这里,我们表明神经母细胞瘤是一种以剪接失调和剪接依赖性为特征的MYC驱动的癌症,需要剪接因子RBM39才能存活。indisulam是一种“分子胶”,其选择性地将RBM39募集到CRL4-DCAF15 E3 E3泛素连接酶以用于蛋白酶体降解,对神经母细胞瘤具有高效的有效性,导致在多种高风险疾病模型中导致无效的无毒性毒性,导致显着反应。遗传耗竭或Indisulam介导的RBM39降解可引起明显的全基因组剪接异常和细胞死亡。从机械上讲,DCAF15对RBM39和高级表达的依赖性决定了神经母细胞瘤对indisulam的精致灵敏度。我们的数据表明,通过精确抑制神经母细胞瘤的脆弱性RBM39来靶向失调的剪接体是一种有效的治疗策略。
心脏剪接因子 RBM20 的突变会导致恶性扩张型心肌病 (DCM)。为了了解 RBM20 相关 DCM 的机制,我们设计了具有 DCM 相关 RBM20 错义突变的同源 iPSC 以及 RBM20 敲除 (KO) iPSC。由这些细胞系制成的 iPSC 衍生的工程心脏组织重现了 RBM20 相关 DCM 的收缩功能障碍,并且显示错义突变的功能障碍比 KO 更严重。通过 eCLIP 对 RBM20 RNA 结合的分析表明,突变型 RBM20 对与肌萎缩侧索硬化症 (ALS) 和加工体相关 RNA 结合蛋白 (FUS、DDX6) 共享的 3′UTR 序列具有功能获得偏好。深度 RNA 测序表明,RBM20 R636S 突变体具有独特的基因、剪接、多聚腺苷酸化和环状 RNA 缺陷,与 RBM20 KO 不同。超分辨率显微镜验证了突变体 RBM20 保持非常有限的核定位潜力;相反,突变蛋白在基础条件下与细胞质加工体 (DDX6) 结合,在急性应激后与应激颗粒 (G3BP1) 结合。总之,我们的结果强调了通过剪接依赖和非剪接途径导致心脏疾病的致病机制。
• 基因组约为 8 kbp • 它们产生两个同向转录本,其差异剪接产生 8-9 种蛋白质 • 转录可从至少两个启动子开始(P 97、P 670)。第一个是早期基因的启动子,第二个是晚期基因的启动子。 • 来自不同启动子的转录本使用不同的终止子(pAE)• 转录本:• P 97 -pAE 导致蛋白质 E6、7、1、5 的剪接和合成。• P 670 -pALs 导致蛋白质 E4、L1 和 L2 的剪接和合成。 • LCR(长控制区)序列包含与启动子相关的增强子。 • E2 蛋白的完整形式作为启动子(特别是早期启动子)的转录激活剂发挥作用,并与 E1 一起诱导复制(在 LCR 中)。
图 1:(a) HPV 阳性和 HPV 阴性癌症患者第一疗程治疗后的临床结果比较。(b) 饼图显示 HPV 阳性和 HPV 阴性癌症患者第一疗程治疗后的生命体征。(c) 癌症样本中 HPV 亚型的频率。颜色显示 HPV 病毒 DNA 整合到宿主基因组中的样本的分布。(d) HPV 阳性宫颈癌患者不同年龄类别肿瘤的 HPV 亚型分布。(e) HPV 阳性癌症中测量的标准化 E6 剪接 mRNA 转录本与标准化 E6 未剪接 mRNA 转录本之间的 Pearson 线性相关性。HPV 亚型 18 和 16 的回归线分别绘制。标记形状显示基于主要 HPV 病毒 DNA 整合到宿主基因组的标记。 (f) E6 未剪接标准化计数 E6 与 E6 剪接标准化计数。颜色显示有关 HPV 亚型的详细信息。标记大小显示受感染患者总生存期(以月为单位)的详细信息。标记标有总生存期。