图 1:EDIT-102 的作用机制。*USH2A 基因中的 Ex13 代表导致 IRD 的任何外显子 13 突变,包括 c.2299delG。EDIT-102 编码人类 U6 启动子、向导 RNA(gRNA;RSQ9145 和 RSQ9265)、hGRK1 启动子、SV40(猿猴病毒 40)SD/SA(剪接供体/剪接受体)序列元素、NLS(核定位序列)、Sa(金黄色葡萄球菌)Cas9(CRISPR 相关蛋白 9)和 pA(多聚腺苷酸化信号)。EDIT-102 在 USH2A 外显子 13 的两侧进行编辑,导致外显子 13 从基因组和 mRNA 中去除,从而产生缺乏氨基酸 723-936 的功能性 Usherin 蛋白。
近膜 (JX) 结构域,其中包含 PKC 磷酸化位点 (S985)、胱天蛋白酶切割位点 (D1002) 和 E3 泛素连接酶 CBL (Casitas-B 系淋巴瘤) 对接位点 (Y1003),均控制 RTK 活性的下调 (图 1a)。3–7 这种改变破坏了外显子 14 两侧的内含子剪接位点,包括内含子 13 的剪接受体位点和内含子 14 的剪接供体位点,或外显子 14 编码序列本身内的突变,都会导致外显子 14 在转录本中跳跃。这些突变中最常见的是碱基替换,其次是插入/缺失。因此,导致MET外显子14跳跃的可变剪接事件会激活MET-HGF通路,促进肿瘤细胞增殖、迁移,并阻止细胞凋亡(图1b)。
通过诱导有害外显子跳跃来恢复基因功能已被证明可有效治疗遗传疾病。然而,许多临床上成功的外显子跳跃疗法都是基于寡核苷酸的短暂疗法,需要频繁给药。基于 CRISPR-Cas9 的基因组编辑可导致外显子跳跃,是一种有前途的治疗方式,可以永久缓解遗传疾病。我们表明,机器学习可以选择破坏剪接受体并导致目标外显子跳跃的 Cas9 向导 RNA。我们通过实验测量了小鼠胚胎干细胞中 1,063 个向导 RNA 靶向的 791 个剪接序列的多样化基因组整合文库的外显子跳跃频率。我们发现,当使用阈值预测的外显子跳跃频率分别为 50% 和 70% 时,我们的方法 SkipGuide 能够以 0.72 和 0.91 的精度识别有效的向导 RNA。我们预计 SkipGuide 将有助于选择用于评估 CRISPR-Cas9 介导的外显子跳跃疗法的引导 RNA 候选物。
图1。通过MESC中的刺激诱导的插入诱变。(a)击球策略的示意图。通过Cas9 RNP的hit-trap供体和基因组的同时裂解会导致靶向捕获。 整合后,基因陷阱盒会导致靶基因启动子的截短蛋白和GFP的表达。 选择盒子由组成型SV40启动子表达紫霉素的抗性基因。 ATS序列:GGTATGTCGGGAACCTCTCCAGG; SA,剪接受体; IRES,内部核糖体入口网站; PA,聚腺苷酸信号。 (b)在杀击球中选择呼吸霉素后MESC克隆的代表性微观图像。 红色箭头分别指示凋亡克隆(顶部),GFP-生存的克隆(中间)和GFP阳性幸存的克隆(底部)。 比例尺,50 µm。 (c)GFP阳性克隆的PCR基因分型证实了HPRT基因座的hit-trap供体的正确整合。 5 /3J,5' /3'交界处。 (d,e)针对HPRT基因座(TH1-1,TH2-4和TH3-5)的hit-trap克隆的Western印迹和QPCR分析,并用微管蛋白作为负载对照。 错误条显示了S.D. 来自三个技术重复。 使用学生的未配对t检验来计算显着性:** p <0.01。通过Cas9 RNP的hit-trap供体和基因组的同时裂解会导致靶向捕获。整合后,基因陷阱盒会导致靶基因启动子的截短蛋白和GFP的表达。选择盒子由组成型SV40启动子表达紫霉素的抗性基因。ATS序列:GGTATGTCGGGAACCTCTCCAGG; SA,剪接受体; IRES,内部核糖体入口网站; PA,聚腺苷酸信号。(b)在杀击球中选择呼吸霉素后MESC克隆的代表性微观图像。红色箭头分别指示凋亡克隆(顶部),GFP-生存的克隆(中间)和GFP阳性幸存的克隆(底部)。比例尺,50 µm。(c)GFP阳性克隆的PCR基因分型证实了HPRT基因座的hit-trap供体的正确整合。5 /3J,5' /3'交界处。(d,e)针对HPRT基因座(TH1-1,TH2-4和TH3-5)的hit-trap克隆的Western印迹和QPCR分析,并用微管蛋白作为负载对照。错误条显示了S.D.来自三个技术重复。使用学生的未配对t检验来计算显着性:** p <0.01。
简化剪接机制的示意图。(a)由三个外显子(E1,E2和E3)组成的前MRNA的通用图以及具有外显子和内含剪接调节元件(ESE,ESS,ISE,ISE和ISS)的两个内含子(外显子之间)。剪接因子(SF)识别调节元件,然后将内含子插入,并产生连续的编码mRNA序列。(b)包含外显子11和12(E11和E12)和内含子11的Col6a1前MRNA段。内含子11的侧面是5'剪接供体(SD)和3'剪接受体(SA)位点。在正常条件下,在没有改变剪接的变体的情况下,内含子11被剪接,并且E11和E12在结果的转录本中连接在一起。(c)用C.930+189c> t变体(RNA中的C> u)从COL6A1基因转录的Pre-MRNA。该变体创建了一个新颖的5'SD位点,并激活了一个先前休眠的3'SA位点,位于新型SD位点上游的72个核苷酸(NT)。如果这两个新站点被剪接体识别,则在成熟的mRNA中将72 nt长的伪外exon(PE)插入E11和E12之间。只有确认新颖的5'SD位点时,将其上游的72 nt长PE和115 nt长的区域都插入成熟的mRNA中。但是,后一个成绩单不超过框架,而不会被翻译而降级。当两个新地点都没有识别出来时,会产生野生型成熟的转录本。(d)剪接切换ASOS在空间上阻止剪接体识别新颖的5'SD位点,并从成熟的转录本中从整个内含子11中获得正确的剪接
晚期胃肠道间质瘤 (GIST) 的一线治疗标准是伊马替尼,每日以标准剂量给药,直至肿瘤进展。伊马替尼耐药性通常是通过肿瘤 DNA 中基因突变的克隆选择而发生的,增加伊马替尼剂量已被证明可以有效克服伊马替尼耐药性。野生型 GIST 不显示 KIT 或血小板衍生生长因子受体 α (PDGFRA) 突变,通常对伊马替尼不敏感,并且在治疗过程中往往会迅速复发。我们在此报告一名 53 岁男性胃 GIST 患者的病例,该患者主要对伊马替尼没有反应,尽管增加了伊马替尼剂量,但仍导致患者死亡。通过使用深度下一代测序条形码感知方法,我们分析了患者 cfDNA 中一组可操作的癌症相关基因,以研究导致伊马替尼耐药的体细胞变化。我们在两个系列循环肿瘤 DNA (ctDNA) 样本中发现,位于剪接受体位点并导致蛋白质功能丧失的从未描述过的 TP53 突变 (c.560-7_560-2delCTCTTAinsT) 的等位基因频率急剧增加。通过数字液滴 PCR 在原发性肿瘤中以亚克隆频率 (0.1%) 回顾性地鉴定了相同的 TP53 突变。在转移性肝病变中检测到的突变等位基因频率非常高 (99%),表明在肿瘤进展过程中突变的快速克隆选择。稳态下的伊马替尼血浆浓度高于文献报道的最低有效浓度阈值 760 ng/ml。计算机模拟预测新生 TP53 (c.560-7_560-2delCTCTTAinsT) 突变与异常 RNA 剪接和侵袭性表型有关,这可能导致尽管使用了