参考文献 i https://en.wikipedia.org/wiki/Atomic_force_microscopy(最后访问时间:20/04/20) ii Giessibl, FJ (2003)。原子力显微镜的发展。现代物理评论,75 (3),949。 iii Binnig, G.、Quate, CF 和 Gerber, C. (1986)。原子力显微镜。物理评论快报,56(9),930。 iv Morita, S.、Giessibl, FJ、Meyer, E. 和 Wiesendanger, R. (Eds.)。(2015)。非接触式原子力显微镜(第 3 卷)。Springer。 v http://web.physik.uni-rostock.de/cluster/students/fp3/AFM_E.pdf(上次访问时间:30/04/20) vi https://myscope.training/legacy/spm/background/(上次访问时间:20/04/20) vii Hansma, HG (1996). 生物分子的原子力显微镜。真空科学与技术杂志 B:微电子和纳米结构处理、测量和现象,14(2),1390-1394。 viii Filleter, T. 和 Bennewitz, R. (2010). 通过原子力显微镜研究 SiC (0001) 上石墨烯薄膜的结构和摩擦特性。物理评论 B,81(15),155412。
在续约期间,您将能够获得缔约方或缔约方提供的业务运营商的支持、服务和维护。 4. 检查将按照承包官员制定的检查实施指南进行。 5. 运输条件包装将按照商业惯例进行。 6. 其他事项 (1) 需提交的文件: A. 服务完毕通知书 2 份,服务完毕后立即提交; B. 借用物品时,需归还物品及资料清单 3 份; C. 归还物品时,需提交收据 3 份。 (2) 提交地点:自卫队茨城地方协力本部征募课。
随机量子电路和随机电路采样 (RCS) 最近引起了量子信息界所有子领域的极大关注,尤其是在谷歌于 2019 年宣布量子霸权之后。虽然 RCS 科学吸收了从纯数学到电子工程等不同学科的思想,但本论文从理论计算机科学的角度探讨了这一主题。我们首先对随机量子电路的 t 设计和反集中特性进行严格处理,以便各种中间引理将在后续讨论中找到进一步的应用。具体而言,我们证明了形式为 EV ⟨ 0 n | V σ p V † | 0 n ⟩ 2 的表达式的新上限,其中 1D 随机量子电路 V 和 n 量子比特泡利算子 σ p 。接下来,我们将从高层次讨论 RCS 至上猜想,该猜想构成了复杂性理论的主要基础,支持了以下观点:深度随机量子电路可能与任意量子电路一样难以进行经典模拟。最后,我们研究了量子和经典欺骗算法在线性交叉熵基准 (XEB) 上的性能,这是 Google 为验证 RCS 实验而提出的统计测试。我们考虑了 Barak、Chou 和 Gao 最近提出的经典算法的扩展,并尝试证明扩展算法可以获得更高的 XEB 分数 [BCG20]。虽然我们无法证明具有 Haar 随机 2 量子比特门的随机量子电路的关键猜想,但我们确实在其他相关设置中建立了结果,包括 Haar 随机幺正、随机 Cliūford 电路和随机费米子高斯幺正。