本文介绍了一种用于雷达应用的新型 X 波段碳化硅 (SiC) 共面波导 (CPW) 单片微波集成电路 (MMIC) 高功率放大器 (HPA) 设计。在设计中,采用了 0.25 μ m γ 形栅极和高电子迁移率晶体管 (HEMT),它们采用了碳化硅基氮化镓技术,因为它们具有高热导率和高功率处理能力。此外,在 8.5 GHz 至 10.5 GHz 的频率范围内,反射系数低于 -10 dB,可产生 21.05% 的分数带宽。此外,MMIC HPA 在 2 GHz 带宽内实现了 44.53% 的功率附加效率 (PAE),输出功率为 40.06 dBm。此外,由于 MMIC HPA 具有高输出功率、宽工作带宽、高 PAE 和紧凑尺寸,因此非常适合用于 X 波段有源电子扫描阵列雷达应用。索引术语 — 有源电子扫描阵列 (AESA) 雷达、共面波导 (CPW)、碳化硅 (SiC) 上的氮化镓 (GaN)、高电子迁移率晶体管 (HEMT)、单片微波集成电路 (MMIC)、高功率放大器 (HPA)。
在现代通信标准中,功率放大器(PA)必须在越来越大的动态范围和带宽上实现高效率,同时保持严格的线性要求。效率提高可以通过负载调制体系结构(例如Doherty功率放大器)来实现。但是,基于此概念的放大器通常与线性降解有关。在4G网络中,数字预性用于减轻负载调节的放大器的非线性。但是,5G NR系统的更大带宽和复杂性限制了DPD的适用性。本论文旨在解决高效率功率扩增器的固有线性,以便无需有限的预期,可以充分地进行效率。它专注于负载模块的平衡放大器(LMBA)。LMBA是最近的建筑,作为经典Doherty PA的替代品。这里提出了对LMBA的新数学分析,重点是负载调制轨迹。这种基于阻抗的分析导致开发了一种新方法,用于从主晶体管的载荷测量值中设计线性/有效的功率放大器。将此方法应用于10W gan Hemt,我们表明,在单端配置中具有相似性能的三个不同的放大器在LMBA档案中使用时的性能非常不同。根据我们的理论,LMBA的幅度(AM-AM)和相(AM-PM)畸变取决于负载轨迹。然后,在GAAS技术中使用相同的方法在1W频段1W MMIC放大器上应用。选择它以使相失真最小化,然后可以选择第二个谐波终止以最大化效率。j级第二谐波终止被确定为最佳情况,导致-40.5dBC ACLR(相邻的通道泄漏比),当用10 MHz刺激10 MHz时,在2.4GHz的耗尽效率为40.5%,为8.6db Papr(峰值平均电力比)LTE信号。但是,在这些频率下,第二个谐波终止对功率放大器的效率的影响很小。缺乏这种额外的自由度,不能为缓解AM-PM选择载荷轨迹,并且效率/线性权衡会降低。最后,提出了阻抗不匹配在功率放大器中的起源和影响。研究了输出阻抗不匹配下负载调制平衡放大器的性能。我们观察到,如果未在输出处显示最佳阻抗,则会取消LMBA的效率提高。然后提出了一种新型的双重平衡LMBA,以实现高效率功率放大器中的不匹配弹性。
Elite RF 由前摩托罗拉工程领导于 2014 年创立,在设计和制造固态射频功率放大器和高功率微波发生器方面树立了极高的标准,可提供现成的现货和定制设计解决方案。凭借内部工程团队和质量控制的 22,000 平方英尺制造设施,我们的核心优势在于我们对协作工程、稳健设计、高制造质量和准时交付的承诺。我们致力于提高您的运营绩效,旨在为您在快速发展的射频领域提供显著的竞争优势。
摘要:节能功率放大器 (PA) 可以延长电池寿命,同时又不牺牲线性度,对移动设备来说越来越重要。包络跟踪 (ET) 设计中的电源调制器会影响射频 (RF) PA 的效率提升。本文介绍了一种基于比较器的电源调制器的设计,该调制器可动态控制驱动 PA 所需的电源电压。 前置放大器被设计用于放大 RF 输入信号,包络检测器在比较器的 0 - 3.3 V 摆幅范围内跟踪放大信号。 单位比较器被设计为工作在 2.1 GHz 频率下,最小上升时间延迟为 0.2 ns,并且它被级联以用作 8 位比较器。多级电源调制器接收来自 8 位比较器的输入。这通过限制流过由比较器关闭的晶体管的电流来确定流向 PA 的电流量。因此,基于比较器的包络跟踪系统旨在设计 ET 电路并将功率附加效率提高到大约 45%。此外,ET 电路不包含电感器等笨重元件,因此预计会占用较少的芯片面积。
• 放大器从低频到 40GHz • 功率从 1W 到 100kW • A 类和 AB 类放大器 • CW/脉冲 • 内置不同形式 - 模块、机架或定制外壳 • 内置保护、启用/禁用输入、高反向隔离和更多功能 • 选项
技术转移与行业界面部(TTID),PPEG空间应用中心(SAC),ISRO AMBAWADI VISTAR,JODHPUR TEKRA,AHMEDABAD -380 015电子邮件:ttid@sac.isro.gov.inhttps.in
有关更多详细信息,您可以联系:技术转移与行业界面部门空间应用中心(SAC),ISRO,Ambawadi Vistar,Ahmedabad -Ahmedabad -380 015电子邮件:ttid@sac.isro.gov.in https:///wwwww.sac.gov.gov.in/sac_industry_industry_industry_industry_indus_industry
RF A S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S”(Y DIV)是由低,中和高的P o r a m p l i f i f i e r阶段以及两个衰减器组成。SSPA的名义RF输出功率为指定的操作频段中的15瓦(41.8 dBm)。九个放大器阶段提供了所需的86 dB增益。小信号阶段在3 + 2链中采用五个CFY25-20设备。这些小信号阶段将基于MGF2407和MGF2430的中等功率阶段。所有这些阶段都包含在RF包装的一个部分中。本节的输出(即中小功率阶段)通过同轴电缆馈送到同一外壳的功率放大器部分。电源部门包含MGF38V和MGF44V设备,后者是25瓦的输出设备。低功率和高功率截面之间的空间被互连和宽松束缚所占据。
摘要:在本文中,提出了基于硅(gan-on-on-si)上基于氮化壳的KU波段主动雷达应用的微波整体整合电路(MMIC)高功率放大器(HPA)。设计基于三阶段的体系结构,并使用Ommic Foundry提供的D01GH技术实施。以及稳定性和热分析提供了有关最大化交付功率的体系结构定义和设计过程的详细信息。为了优化放大器性能,输出组合仪中包含了不对称性。实验结果表明,HPA达到39.5 dBM脉冲模式输出功率,峰值线性增益为23 dB,排水效率为27%,并且在16-19 GHz频率范围内具有良好的输入/输出匹配。芯片区域为5×3.5 mm 2,用于测量值安装在定制模块上。这些结果表明,基于GAN-on-SI的固态功率放大器(SSPA)可用于实现KU波段活动雷达。
参数 最小值典型值最大值 单位 工作频率 27 31 GHz 28V 小信号 小信号线性增益 18.5 20 dB 输入回波损耗 -35 -20 dB 输出回波损耗 -26 -16 dB 28V 晶圆上脉冲功率 Psat(27 dBm 时) 42 dBm 功率增益(27 dBm 时) 19.1 19.6 20.1 dB P1db 41.20 42 42.5 dBm PAE(27 dBm 时) 30.5 32.5 34 % 最大 PAE 31 32.9 33.8 % 24V、25⁰C 固定 CW 外壳温度 Psat(28 dBm 时) 38.1 39 39.6 dBm 功率增益(28 dBm 时) 15.3 16.9 17.8 dB PAE(28 dBm 时) 19.1 22 24.7 % 最大 PAE 24 28.4 % 漏极电压 28 V 第 1 阶段栅极电压 -3.925 V 第 2 阶段栅极电压 -3.925 V 第 1 阶段 Idq 240 mA 第 2 阶段 Idq 960 mA