抗体药物偶联物 (ADC) 能够将细胞毒性药物靶向递送至肿瘤细胞。理想情况下,ADC 应保留抗体的良好药代动力学和功能特性,在体循环中保持完整无毒,并在靶位点激活并释放足够的药物以杀死靶细胞。ADC 开发中的一个主要挑战是接头的设计。Multilink TM 是一种新型接头,可被组织蛋白酶 B 1,2 的羧基二肽酶活性选择性识别和裂解。这种新型接头系统可实现高效和选择性的药物释放。它在血浆中也很稳定,并且能够制备具有高药物抗体比 (DAR) 的 ADC。增加杀死它们的机会。
1. PHL-541 可再生能源与存储材料 PEC 4 3 1 0 3 0 2. PHL-542 模拟集成电路设计 PEC 4 3 1 0 3 0 3. PHL-543 数字信号处理 PEC 4 3 1 0 3 0 4. PHL-544 薄膜技术 PEC 4 3 1 0 3 0 5. PHL-545 纳米科学与纳米技术 PEC 4 3 1 0 3 0 6. PHL-546 材料与器件的功能特性 PEC 4 3 1 0 3 0 7. PHL-547 用于器件应用的工程材料 PEC 4 3 1 0 3 0 8. PHL-548 半导体微电子技术 PEC 4 3 1 0 3 0 9. PHL-549 纳米电子学与光子学 PEC 4 3 1 0 3 0 10. PHL-550 太阳能光伏和储能 PEC 4 3 1 0 3 0 11. PHL-551 先进燃料电池和电池组技术 PEC 4 3 1 0 3 0 12. PHL-552 MEMS 和 NEMS PEC 4 3 1 0 3 0 13. PHL-553 先进陶瓷和复合材料 PEC 4 3 1 0 3 0
线粒体相关内质网膜 (MAM) 由内质网和线粒体的物理连接形成。在过去的几十年中,内质网 - 线粒体通讯研究取得了重大突破。已发现 MAM 区室在调节神经功能方面至关重要。越来越多的研究表明 MAM 参与心血管疾病的发展。然而,MAM 在心力衰竭中的具体作用仍有待充分了解。在本文中,我们首先总结了 MAM 和 MAM 相关蛋白的结构和功能特性。然后我们重点关注 MAM 在心肌梗死、心肌病和心力衰竭中的作用,并讨论 MAM 在疾病进展和治疗中的作用。阐明这些问题可能为心力衰竭的治疗干预提供重要见解。
摘要:与化学计量简单的氮化铝 (AlN) 相比,锆钛酸铅薄膜 (PZT) 具有优异的压电和介电性能,是先进微机电系统 (MEMS) 器件中另一种有希望的候选材料。大面积 PZT 薄膜的制造具有挑战性,但需求迫切。因此,有必要建立合成参数与特定性能之间的关系。与溶胶-凝胶和脉冲激光沉积技术相比,本综述重点介绍了磁控溅射技术,因为它具有高度的可行性和可控性。在本文中,我们概述了 PZT 薄膜的微观结构特征、合成参数(如基底、沉积温度、气体气氛和退火温度等)和功能特性(如介电、压电和铁电等)。本综述特别强调了这些影响因素的依赖性,为研究人员通过磁控溅射技术获取具有预期性能的PZT薄膜提供实验指导。
n MIL-STD-1553 是一种协议标准,它定义了主要用于军用飞机的串行数据总线的电气和功能特性。1553 标准描述了通信方法、数据总线要求以及数据总线的电气接口要求。MIL-STD-1553 的总线架构可以减小系统和互连系统的接线的尺寸和重量,本质上是可靠的,并结合了冗余,使其成为一种安全的数据总线解决方案。MIL-STD- 1553A 于 1975 年发布,后来于 1978 年修订为 MIL-STD-1553B,此后一直作为军用飞机的主要指挥和控制互连。三十多年来,MIL-STD-1553 的性能、可靠性和安全性使其成为军用飞机的标准,现在正被设计为下一代商用飞机的标准。
2019 年 7 月和 8 月,《材料学报》(第 60 卷,第 7 和第 8 期)编辑了一期特刊,标题为“具有高级功能纳米材料的剧烈塑性变形”。25)本期特刊共包含 41 篇文章,主要包括评论和概述文章,以及一些额外的常规文章。它涵盖了基于工艺开发的SPD相关研究,26 28) 结构特性评估26,29 35) 和功能特性评估36 45) 建模和仿真,46,47) 材料合成,32,48,49) 晶格缺陷的作用,35,50 53) 晶粒细化和微观结构演变,36,54 57) 压力和/或应变诱导的相变,47 49,58,59) 应用于聚合物60) 以及金属和非金属玻璃,61)
等方面 . 人机功能分配主要包括静态和动态两种类型 , 静态功能分配是从功能特性和需求分析入手 , 通过比较人 和系统在完成该功能上的能力优势或绩效优劣 , 决定该功能分配给人还是系统 . 动态功能分配方法则是在静态 人机功能分配的基础上 , 当动态触发机制响应时 , 允许系统在运行阶段根据情况的变化将功能在人与系统之间 动态地重新分配 , 提高整体的工作效率 . 多智能体的任务分配是指在作战开始前 , 指挥中心通常会根据已掌握的 战场信息 , 对己方作战单元进行任务预分配 . 但随着战场情景变化以及突发情况的出现 , 预分配方案可能会使得 执行任务的效能降低 , 多智能体如何调整自身任务 , 使得执行任务的效能保持最大是其研究的主要内容 . 计算机 任务调度研究的是将任务动态地调用给各个虚拟机并提供给用户使用 , 怎样合理地将任务分配给不同的虚拟机 , 进而提升整个系统的性能是其研究的重点 . 以上分配原则对于多乘员分配有很好的参考价值 , 但舱室乘员间任 务分配时 , 主要考虑到人的特性 , 需要以人的理论基础来加以研究 [4] . 针对实际作战过程中 , 乘员应对非预期事件效率低下的问题 , 本文提出了一种多乘员协同动态任务分配方 法 . 在非预期事件触发时 , 对任务进行 DAG 分解及分层 , 根据乘员脑力负荷、乘员能力、任务相关度以及时间成 本四个因素 , 按照一定的任务分配顺序 , 基于 AHP-TOPSIS 方法进行乘员的优选 , 实时更新乘员状态 , 并以此为 依据进行下一任务的分配 . 任务分配过程可实现随乘员状态变化而动态调整 , 达到负荷均衡、效能最优 , 从而将 多任务分配问题简化为单个任务的多属性决策问题 .
热材料去除过程:电脱水加工(EDM):基本原理,过程参数,MRR的估计,熔化温度深度的建模,空化的作用和工作仪材料的熔化温度,表面处理量和加工精度电极和电磁流体和介电流体,EDM和电线EDM。电子束加工(EBM):简介,电子束加工与其他热过程的比较,EBM的设置,电子梁的功率需求,EBM工艺的力学,使用Buckingham的PIE定理在EBM中的功能特性衍生。激光束加工(LBM):简介,激光和反馈机制的类型,MRR,半无限表面上的数值建模和圆形束,机器时间的估计,LBM中的稳态孔渗透模型。