抽象的现代生产系统由于客户需求的增加而面临巨大的挑战,导致了复杂的生产系统。通过管理所有操作以优化关键绩效指标的适当生产控制系统来确保竞争行业的运营效率。当前,控制系统主要基于静态和基于模型的启发式方法,需要显着的人类领域知识,因此,不符合ManufacturingCompanies.Data-DrivenReinReinForecrivecompan(RL)的动态环境,显示了CommperlistresultSinapplicationssultsinapplicationssuchassuchashassuchasboard and Commuter Games and Computer Games and Posertans Productions Productions应用程序。本文介绍了RL的设计,以通过在一个复杂的车间派遣订单派遣的现实世界示例来创建自适应生产控制系统。作为RL算法是“黑匣子”的方法,它们本质上禁止全面理解。此外,高级RL算法的经验仍然仅限于单个成功的应用程序,这限制了结果的可传递性。在本文中,我们研究了状态,行动和奖励功能RL设计的性能。分析结果时,我们确定了强大的RL设计。这使RL成为高度动态和复杂生产系统的有利控制系统,主要是在域知识受到限制时。
摘要:大多数当前的强化学习研究都是在游戏和其他模拟域的背景下完成的。但是,利用这些领域的令人印象深刻的结果来产生现实世界的影响需要应对其他挑战。这些挑战包括处理结构化的状态和行动空间,即使是适度数据集,也可以提供安全,健壮和可扩展的解决方案,并明确考虑RL代理如何与人类合作者进行交互。AI4RealNet项目重点介绍了在现实世界中关键基础架构(例如电网,火车调度和空中交通管理)的顺序决策中的此类挑战。在本演讲中,我将讨论AI4RealNet项目如何处理这些问题,以及我们团队在这些领域的技术进步。
对应原则指出,经典力学从适当的限制中源自量子力学。然而,除了这个启发式规则之外,信息理论的观点表明,经典的力学是量子现实的压缩,较低信息的表示。量子力学通过叠加,纠缠和相干性来编码更多的信息,这些信息由于反应,相位平均和测量而丢失,将系统降低到经典概率分布。使用kolmogorov的复杂性来量化此转变,其中经典系统需要信息(n)位的信息,而量子描述仅需要O(2 n),显示复杂性的指数降低。进一步的合理性来自Ehrenfest的定理,该定理可确保量子期望值遵守牛顿的定律和路径的整体抑制,从而消除了当S≫≫时消除了非经典轨迹。因此,我们认为,我们认为经典力学是一种有损的,计算上降低的量子物理学的编码,而不是系统的量子相关性丧失,我们认为经典力学是一种有损的,计算上的编码。
摘要:不断学习的能力对于机器人获得高水平的智力和自主权至关重要。在本文中,我们考虑针对四足机器人的连续加强学习(RL),其中包括能够不断学习子序列任务(可塑性)并保持先前任务的性能(稳定性)的能力。提出的方法获得的策略使机器人能够依次学习多个任务,同时克服了灾难性的遗忘和可塑性的丧失。同时,它可以实现上述目标,并尽可能少地修改原始RL学习过程。所提出的方法使用Piggyback算法为每个任务选择受保护的参数,并重新定位未使用的参数以提高可塑性。同时,我们鼓励探索政策网络,鼓励策略网络的软网络的熵。我们的实验表明,传统的持续学习算法在机器人运动问题上不能很好地表现,并且我们的算法对RL培训的进度更加稳定,并且对RL培训的进度更少。几个机器人运动实验验证了我们方法的有效性。
深度强化学习(RL)在某些环境中令人印象深刻,而在其他环境中却在灾难性上失败。理想情况下,RL理论应该能够理解为什么是这样,即范围可预测实践绩效。不幸的是,当前的理论还没有这种能力。我们通过引入一个新的数据集B Ridge将标准深度RL算法与先前的样本复杂性界限进行比较。它由155个确定性MDP组成,来自共同的深度RL基准,以及它们相应的表格表示,这使我们能够准确地计算实例依赖性界限。我们选择专注于确定性环境,因为它们具有随机环境的许多有趣属性,但更容易分析。使用B Ridge,我们发现先前的界限与Deep RL成功与失败时相关,而是发现了一个令人惊讶的属性。当随机策略下具有最高Q值的行动时,最佳策略也具有最高的Q值(即当对随机策略的Q函数上贪婪是最佳的)时,深度RL倾向于成功;当他们没有的时候,深度RL往往会失败。我们将此属性概括为一个新的MDP的复杂度度量,我们称之为有效的地平线,该范围与该MDP中需要多少个lookahead搜索步骤,以确定下一个最佳动作,当叶子节点随机推出评估时。使用BRIDGE,我们表明,基于Horizon的有效界限比在四个指标之间的先前样品复杂性界限更紧密地反映了PPO和DQN的经验性能。我们还发现,与现有界限不同,有效的视野可以预测使用奖励成型或预训练的勘探政策的影响。我们的代码和数据可在https://github.com/cassidylaidlaw/effective-horizon上找到。
这项工作介绍了用于应用强化学习(RL)的工具链,特别是在安全至关重要的现实世界环境中的深层确定性政策梯度(DDPG)算法。作为示例性应用,在均质电荷压缩点火(HCCI)模式下的单缸内燃机测试台上证明了瞬态载荷控制,这表明高热E FFI且发电率较低。但是,HCCI由于其非线性,自回归和随机性质而对传统控制方法构成了挑战。rl提供了可行的解决方案,但是,在应用于HCCI时,必须解决安全问题(例如压力上升率过高)。单个不合适的控制输入会严重损坏发动机或引起失火并关闭。此外,不知道工作限制,必须通过实验确定。为了减轻这些风险,实施了基于K-Neareb最邻居算法的实时安全监控,从而可以与Testbench进行安全互动。当RL代理通过与测试板互动来学习控制策略时,该方法的可行性被证明。均方根误差为0。1374 bar用于指定的平均e ff效力压力,可与文献中的基于神经网络的控制器相当。通过调整代理商的政策增加乙醇能源份额,在维持安全性的同时促进可再生燃料的使用,从而进一步证明了工具链的灵活性。这种RL方法解决了将RL应用于安全至关重要的现实环境的长期挑战。开发的工具链具有其适应性和安全机制,为RL在发动机测试板和其他关键性设置中的未来适用性铺平了道路。
AI系统通过增强学习(RL)算法具有促进社会发展的巨大潜力,但他们的部署经常受到安全的安全问题的阻碍。尤其是在关键安全应用中,研究人员提出了人们对未对齐RL代理的意外危害或不安全行为的担忧。安全加强学习的哲学(Saferl)是使RL代理与无害的意图和安全的行为模式保持一致。在Saferl中,代理商通过从环境中收到反馈来制定最佳政策,同时还满足了最大程度地减少意外伤害或不安全行为的风险的要求。但是,由于Saferl算法实现的复杂性质,将各个领域的方法结合起来提出了巨大的挑战。这导致在当代Saferl Research Milieu中缺乏凝聚力和有效的学习框架。在这项工作中,我们引入了一个旨在加快Saferl研究努力的基础框架。我们的综合框架涵盖了一系列涉及不同RL域的算法,并对安全元素进行了极大的重视。我们的效果将使与Saferl相关的搜索过程更加精简和有效,从而促进了AI安全性的进一步研究。我们的项目发布于:https://github.com/pku-alignment/omnisafe。关键字:安全加强学习,学习框架,并行加速
时空应用,例如出租车命令调度和仓库任务计划,并急剧取决于操作效率的算法。但是,这些应用的固有动力性质在算法设计中提出了挑战。流动性服务的增长有助于收集过时的时空数据,这又促使算法设计人员使用数据驱动的方法。强化学习(RL)以其强大的性能和对空间环境的适用性而认可的,它具有相当大的研究兴趣。尽管具有潜力,但RL算法仍需要将模拟器用于培训和验证目的。然而,没有为时空算法de-smage开发任何特定的类似系统。此空缺阻碍了时空算法设计师的进步。在此演示中,我们构建了一个称为数据驱动的临时模拟器(DSS)的系统,希望为Spa-Totiotemporal算法设计师提供便利。dss擅长处理与出租车订单调度和仓库任务计划有关的问题,并具有为其他用户确定的方案而扩展的多功能性。该系统包括可视化模块,这些模块具有洞察力,以及旨在流式传输开发过程的开发人员工具。这使设计师能够有效地制定,评估和重新确定其算法,从而在时空应用开发中可能加速创新。
摘要 - 识别最佳加入订单(JOS)在数据库研究和工程中引人注目。由于较大的搜索空间,已建立的经典方法依赖于近似和启发式方法。最近的努力成功地探索了JO的强化学习(RL)。同样,RL的量子版本也受到了相当大的科学关注。然而,如果他们能够通过改进的量子处理器获得可持续的总体实践优势,这是一个悬而未决的问题。在本文中,我们提出了一种新的方法,该方法基于混合变量量子ANSATZ,使用量子增强学习(QRL)。它能够处理一般的灌木丛树木,而不是根据基于量子( - 启发)优化的方法来求助于更简单的左底变体,但需要多个幅度较少的量子,即使对于nisq后系统来说,这也是一个稀缺的资源。尽管电路深度中等,但ANSATZ超过了当前的NISQ功能,这需要通过数值模拟进行评估。虽然QRL在解决结果质量方面解决JO问题(尽管我们看到奇偶校验)可能并没有明显超过分类方法,但我们发现所需的可训练参数的大幅度降低。此优势实际上相关的方面,从较短的培训时间到经典的RL,涉及的经典优化通过或更好地使用可用培训数据,并且适合数据流和低延迟处理方案。索引术语 - Quantum机器学习,加固学习,查询优化,数据库管理系统我们的全面评估和仔细的讨论对可能的实际量子优势提供了平衡的观点,为将来的系统性处理提供了见解,并允许定量评估数据库管理系统最关键问题之一的量子方法的权衡。
摘要 - 在此处考虑了动态无线设置中多类调度的问题,其中可用有限的带宽资源分配以处理随机服务需求到达,而在有效载荷数据请求,延迟公差和重要性/优先级方面属于不同类别。除了异质流量外,另一个重大挑战还来自由于时间变化的沟通渠道而导致的随机服务率。现有的调度和资源分配方法,范围从简单的贪婪启发式和受限优化到组合设备,是针对特定网络或应用程序配置量身定制的,通常是次优的。在此帐户中,我们求助于深入的增强学习(DRL),并提出了分配深层确定性策略梯度(DDPG)算法,并结合了深度设置以解决上述问题。此外,我们提出了一种使用决斗网络的新颖方式,这将进一步提高绩效。我们所提出的算法在合成数据和实际数据上都进行了测试,显示了对组合和优化的基线方法的一致增长,以及状态调度计划指标。我们的方法可以使用Knapsack优化的功率和带宽资源降低13%的功率和带宽资源。