摘要 - 与普通并发和分布式系统相关联,加密协议的区别是需要推理对手干扰的必要性。我们建议通过可执行的协议语言一种新的驯化方法来驯服这种复杂性,该协议语言不会直接揭示对手,而是执行一组直觉的卫生规则。凭借这些规则,用这种语言编写的协议在没有主动的dolev-yao风格对手的情况下表现出相同的行为。因此,可以通过分析没有对手的状态空间来简化有关协议的正式推理,即使是na've模型检查也可以确定多方协议的正确性。我们介绍了辛辣的设计和实施,即正确实施的安全协议的缩写,包括其输入语言的语义;基本的安全证明,在COQ定理供奉献中正式化;和自动化技术。我们通过少数案例研究对工具的性能和能力进行初步评估。
本文探讨了在智慧城市、医疗保健和汽车领域将物联网平台与第三方服务集成的复杂性,重点是确保安全的身份验证、授权和通信。在物联网第三方集成的背景下,我们分析了整个数据生命周期(从收集到删除)中数据隐私和安全的关键方面。本文讨论了关键挑战,例如这些集成引入的可扩展性问题和潜在的安全漏洞。通过研究案例研究和当前的最佳实践,我们提出了一个全面的安全物联网集成框架,以平衡功能和严格的安全要求。我们的研究结果强调了强大的 API(应用程序编程接口)安全性、加密协议和访问控制机制在创建弹性物联网生态系统中的重要性。本文为物联网安全知识体系的不断增长做出了贡献。它为寻求利用第三方集成同时保持其物联网平台完整性和机密性的组织提供了实用指南。
最早的基于亚速的加密协议之一是Charles-Goren-Lauter(CGL)哈希函数[16]。此哈希函数利用输入位在超单向椭圆曲线2差异图上生成随机行走,并输出最终顶点的Jinvariant。基于哈希函数安全性的严重问题是在两个给定的超大椭圆曲线之间找到同基因的困难。在各种加密方案中计算异基因的方法包括使用模块化多项式,V´elu的公式,V´elu-SQRT [5]和自由基同基因。这些方法最适合低度的低质体,然后将其链接在一起以产生(平滑)大的同基因。在[14]中引入了椭圆曲线之间的自由基异基因的概念。一个自由基N-发育公式输入由椭圆曲线E和n- torsion点p∈E组成的一对(E,P),并输出一对(E',P'),使得
要建立安全的Wi-Fi连接,站首先将几个未保护的管理框架与接入点(AP)交换,以最终互相验证并安装成对密钥。因此,对手可能会在物理(PHY)或MAC层上欺骗那些受保护的帧,从而促进其他攻击(例如,中间和饥饿攻击)。尽管做了一些临时努力,但仍然没有实际的方式来抵抗这些攻击。在本文中,我们提出实用方案在PHY层采用加密图,并结合了时间限制的技术来检测和减轻基于企业和基于802.1倍的公共网络中的此类攻击。我们的向后兼容方案将AP(或消息身份验证代码)的数字签名嵌入到框架前序信号中,并仅在连接建立过程中添加可忽略的延迟并获得98。在检测试图中继有效前置的攻击者时,有9%的真实位置率。此外,我们使用模型检查器和加密协议验证器对我们的方案进行正式的安全性分析,并在商业AP和USRP测试台上评估其性能。
量子理论接纳了量子非局部性的集合而没有纠缠(QNLWE)。这些合奏由看似古典的状态(它们是完全可区分的且无输入的)组成的,这些状态不能完全歧视本地操作和经典交流(LOCC)。在这里,我们从因果的角度分析了Qnlwe,并展示了如何使用本地操作和经典交流完美地歧视其中的某些集团,而无需确定的因果关系。具体来说,三方访问了无限期因果秩序实例(Araújo-Feix - Baumeler-Wolf进程)可以完美地歧视QNLWE合奏中的状态 - 与本地操作的移动合奏。因此,这种类型的量子非局部性以一定的因果秩序消失,同时保留经典的交流。我们的结果从而利用了LOCC是三个约束的结合的事实:本地操作,经典交流和确定的因果秩序。此外,我们还展示了Araújo-Feix的多部分概括 - Baumeler-Wolf工艺如何转化为展示QNLWE的多Quhitemembles。此类合奏对于加密协议具有独立的兴趣,并且研究了LOCC无法实现的可分离量子操作。
量子同态加密允许服务器直接对加密数据进行计算,它是构建更复杂的量子密码协议的基本基元。要实现这样的构造,量子同态加密必须满足两个隐私属性:数据隐私(确保输入数据对服务器是私密的)和电路隐私(确保计算后的密文不会泄露有关用于执行计算的电路的任何其他信息,除了计算本身的输出)。虽然电路隐私在经典密码学中得到了充分研究,并且许多同态加密方案都可以配备它,但它的量子类似物却很少受到关注。在这里,我们为具有信息论安全性的量子同态加密建立了电路隐私的定义。此外,我们将量子无意识传输简化为量子同态加密。通过使用这种简化,我们的工作揭示了广泛的量子同态加密协议家族中的电路隐私、数据隐私和正确性之间的基本权衡,其中包括仅允许计算 Cliūford 电路的方案。
这项研究历时五年,深入探讨了这种融合对网络安全的影响,特别关注人工智能/自然语言处理 (NLP) 模型和量子加密协议,特别是 BB84 方法和特定的 NIST 批准算法。该研究利用 Python 和 C++ 作为主要计算工具,采用“红队”方法,模拟潜在的网络攻击来评估量子安全措施的稳健性。为期 12 个月的初步研究奠定了基础,本研究旨在在此基础上进行扩展,旨在将理论见解转化为可操作的现实世界网络安全解决方案。该研究位于牛津大学技术区,受益于最先进的基础设施和丰富的协作环境。该研究的总体目标是确保随着数字世界向量子增强操作过渡,它仍然能够抵御人工智能驱动的网络威胁。该研究旨在通过迭代测试、反馈集成和持续改进来促进更安全、量子就绪的数字未来。研究结果旨在广泛传播,确保知识惠及学术界和全球
摘要。不经意传输 (OT) 是一种基本加密协议,在安全多方计算 (MPC) 中起着至关重要的作用。大多数实用的 OT 协议(例如 Naor 和 Pinkas (SODA'01) 或 Chou 和 Orlandi (Latincrypt'15))都基于类似 Diffie-Hellman (DH) 的假设,并且不具有后量子安全性。相反,MPC 协议的许多其他组件(包括乱码电路和秘密共享)都是后量子安全的。随着量子计算的出现,对非后量子 OT 协议的依赖带来了重大的安全瓶颈。在本文中,我们通过构建一个基于 Saber(一种基于 Mod-LWR 的密钥交换协议)的简单、高效的 OT 协议来解决这个问题。我们实现了我们的 OT 协议并进行了实验以评估其性能。我们的结果表明,我们的 OT 协议在计算和通信成本方面都明显优于 Masny 和 Rindal (CCS'19) 提出的最先进的基于 Kyber 的后量子 OT 协议。此外,我们的 OT 协议的计算速度比 Chou 和 Orlandi (Latincrypt'15) 提出的最著名的基于 DH 的 OT 协议更快,使其在高带宽网络设置中具有竞争力,可以取代基于 DH 的 OT。
模块标题 量子信息理论 模块标题(英文) 量子信息理论 推荐用于:第 6 学期(理学士) 责任 量子场论和引力系主任 持续时间 1 学期 模块周期 每个夏季学期 教学方法 • 讲座“量子信息理论”(2 SWS)= 30 小时出勤时间和 45 小时独立学习 = 75 小时 • 练习“量子信息理论”(2 SWS)= 30 小时出勤时间和 45 小时独立学习 = 75 小时 工作量 5 CP = 150 个工作小时(工作量) 可用性理学士国际物理研究项目理学学士物理目标学生了解量子信息理论的概念基础及其基本方法。他们能够将知识运用到具体问题中。他们能够独立地阅读专业文献并扩展知识。内容 • 贝尔和 Tsirelson 定理 • 无克隆和无信号定理 • 纠缠和纠缠度量 • 量子信道及其容量 • 量子加密协议 • 量子电路和量子算法 • 退相干 • 量子纠错 • 拓扑量子计算 • 量子比特和量子计算机的物理实现
遗忘转移(OT)是保存密码原始的两个重要方面的隐私。ot涉及一个具有多个信息的发件人和一个具有选择位的接收器。选择位代表重新提升者想要作为OT输出获得的信息。在协议末尾,发件人对选择位的遗忘和接收器仍然忽略了未选择的信息的内容。它具有从安全的多方计算,隐私权协议到安全连接的加密协议的应用程序。大多数经典的OT协议都是基于数字理论的基础,这些理论是不是量子安全的,现有的量子OT协议并不那么有效且实用。在此,我们介绍了简单而有效的量子OT协议的设计和分析,即QOT。QOT是通过使用Gao等人提出的不对称键分布而设计的。[18]作为构建基块。设计的QOT仅需要单个光子作为量子状态的来源,并且使用单个粒子射影测量计算状态的测量值。这些使QOT有效且实用。我们提出的设计可抵抗量子攻击。此外,QOT还提供了长期的安全性。